Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import cv2 | |
import numpy as np | |
from gradio_webrtc import WebRTC | |
from pathlib import Path | |
from twilio.rest import Client | |
import os | |
account_sid = os.environ.get("TWILIO_ACCOUNT_SID") | |
auth_token = os.environ.get("TWILIO_AUTH_TOKEN") | |
client = Client(account_sid, auth_token) | |
token = client.tokens.create() | |
rtc_configuration = { | |
"iceServers": token.ice_servers, | |
"iceTransportPolicy": "relay", | |
} | |
CLASSES = [ | |
"background", | |
"aeroplane", | |
"bicycle", | |
"bird", | |
"boat", | |
"bottle", | |
"bus", | |
"car", | |
"cat", | |
"chair", | |
"cow", | |
"diningtable", | |
"dog", | |
"horse", | |
"motorbike", | |
"person", | |
"pottedplant", | |
"sheep", | |
"sofa", | |
"train", | |
"tvmonitor", | |
] | |
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) | |
directory = Path(__file__).parent | |
MODEL = str((directory / "MobileNetSSD_deploy.caffemodel").resolve()) | |
PROTOTXT = str((directory / "MobileNetSSD_deploy.prototxt.txt").resolve()) | |
net = cv2.dnn.readNetFromCaffe(PROTOTXT, MODEL) | |
def detection(image, conf_threshold=0.3): | |
blob = cv2.dnn.blobFromImage( | |
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5 | |
) | |
net.setInput(blob) | |
detections = net.forward() | |
image = cv2.resize(image, (500, 500)) | |
(h, w) = image.shape[:2] | |
labels = [] | |
for i in np.arange(0, detections.shape[2]): | |
confidence = detections[0, 0, i, 2] | |
if confidence > conf_threshold: | |
# extract the index of the class label from the `detections`, | |
# then compute the (x, y)-coordinates of the bounding box for | |
# the object | |
idx = int(detections[0, 0, i, 1]) | |
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) | |
(startX, startY, endX, endY) = box.astype("int") | |
# display the prediction | |
label = f"{CLASSES[idx]}: {round(confidence * 100, 2)}%" | |
labels.append(label) | |
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2) | |
y = startY - 15 if startY - 15 > 15 else startY + 15 | |
cv2.putText( | |
image, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2 | |
) | |
return image | |
css=""".my-group {max-width: 600px !important; max-height: 600 !important;} | |
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
Image Detection from Webcam Stream (powered by WebRTC ⚡️) | |
</h1> | |
""") | |
with gr.Column(elem_classes=["my-column"]): | |
with gr.Group(elem_classes=["my-group"]): | |
image = WebRTC(label="Strean", rtc_configuration=rtc_configuration) | |
conf_threshold = gr.Slider( | |
label="Confidence Threshold", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
value=0.30, | |
) | |
image.webrtc_stream( | |
fn=detection, | |
inputs=[image], | |
stream_every=0.05, | |
time_limit=30 | |
) | |
if __name__ == '__main__': | |
demo.launch() | |