Spaces:
Runtime error
Runtime error
Commit
β’
d219fd7
1
Parent(s):
ca0c4cb
Modify files
Browse files- README.md +20 -5
- app.py +128 -0
- examples/1.png +0 -0
- requirements.txt +4 -0
- trained.h5 +3 -0
README.md
CHANGED
@@ -1,13 +1,28 @@
|
|
1 |
---
|
2 |
-
title: EDSR
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: EDSR Keras
|
3 |
+
emoji: π
|
4 |
+
colorFrom: pink
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.0.5
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
This space is the demo for the EDSR (Enhanced Deep Residual Networks for Single Image Super-Resolution) model. This model surpassed the performace of the current available SOTA models.
|
14 |
+
|
15 |
+
Paper Link - https://arxiv.org/pdf/1707.02921
|
16 |
+
|
17 |
+
Keras Example link - https://keras.io/examples/vision/edsr/
|
18 |
+
|
19 |
+
|
20 |
+
TODO:
|
21 |
+
|
22 |
+
Hack to make this work for any image size. Currently the model takes input of image size 150 x 150.
|
23 |
+
We pad the input image with transparant pixels so that it is a square image, which is a multiple of 150 x 150
|
24 |
+
Then we chop the image into multiple 150 x 150 sub images
|
25 |
+
Upscale it and stich it together.
|
26 |
+
|
27 |
+
The output image might look a bit off, because each sub-image dosent have data about other sub-images.
|
28 |
+
This approach assumes that the subimage has enough data about its surroundings
|
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from tensorflow import keras
|
4 |
+
from tensorflow.keras import layers
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Define EDSR custom model
|
8 |
+
|
9 |
+
class EDSRModel(tf.keras.Model):
|
10 |
+
def train_step(self, data):
|
11 |
+
# Unpack the data. Its structure depends on your model and
|
12 |
+
# on what you pass to `fit()`.
|
13 |
+
x, y = data
|
14 |
+
|
15 |
+
with tf.GradientTape() as tape:
|
16 |
+
y_pred = self(x, training=True) # Forward pass
|
17 |
+
# Compute the loss value
|
18 |
+
# (the loss function is configured in `compile()`)
|
19 |
+
loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)
|
20 |
+
|
21 |
+
# Compute gradients
|
22 |
+
trainable_vars = self.trainable_variables
|
23 |
+
gradients = tape.gradient(loss, trainable_vars)
|
24 |
+
# Update weights
|
25 |
+
self.optimizer.apply_gradients(zip(gradients, trainable_vars))
|
26 |
+
# Update metrics (includes the metric that tracks the loss)
|
27 |
+
self.compiled_metrics.update_state(y, y_pred)
|
28 |
+
# Return a dict mapping metric names to current value
|
29 |
+
return {m.name: m.result() for m in self.metrics}
|
30 |
+
|
31 |
+
def predict_step(self, x):
|
32 |
+
# Adding dummy dimension using tf.expand_dims and converting to float32 using tf.cast
|
33 |
+
x = tf.cast(tf.expand_dims(x, axis=0), tf.float32)
|
34 |
+
# Passing low resolution image to model
|
35 |
+
super_resolution_img = self(x, training=False)
|
36 |
+
# Clips the tensor from min(0) to max(255)
|
37 |
+
super_resolution_img = tf.clip_by_value(super_resolution_img, 0, 255)
|
38 |
+
# Rounds the values of a tensor to the nearest integer
|
39 |
+
super_resolution_img = tf.round(super_resolution_img)
|
40 |
+
# Removes dimensions of size 1 from the shape of a tensor and converting to uint8
|
41 |
+
super_resolution_img = tf.squeeze(
|
42 |
+
tf.cast(super_resolution_img, tf.uint8), axis=0
|
43 |
+
)
|
44 |
+
return super_resolution_img
|
45 |
+
|
46 |
+
|
47 |
+
# Residual Block
|
48 |
+
def ResBlock(inputs):
|
49 |
+
x = layers.Conv2D(64, 3, padding="same", activation="relu")(inputs)
|
50 |
+
x = layers.Conv2D(64, 3, padding="same")(x)
|
51 |
+
x = layers.Add()([inputs, x])
|
52 |
+
return x
|
53 |
+
|
54 |
+
|
55 |
+
# Upsampling Block
|
56 |
+
def Upsampling(inputs, factor=2, **kwargs):
|
57 |
+
x = layers.Conv2D(64 * (factor ** 2), 3, padding="same", **kwargs)(inputs)
|
58 |
+
x = tf.nn.depth_to_space(x, block_size=factor)
|
59 |
+
x = layers.Conv2D(64 * (factor ** 2), 3, padding="same", **kwargs)(x)
|
60 |
+
x = tf.nn.depth_to_space(x, block_size=factor)
|
61 |
+
return x
|
62 |
+
|
63 |
+
|
64 |
+
def make_model(num_filters, num_of_residual_blocks):
|
65 |
+
# Flexible Inputs to input_layer
|
66 |
+
input_layer = layers.Input(shape=(None, None, 3))
|
67 |
+
# Scaling Pixel Values
|
68 |
+
x = layers.Rescaling(scale=1.0 / 255)(input_layer)
|
69 |
+
x = x_new = layers.Conv2D(num_filters, 3, padding="same")(x)
|
70 |
+
|
71 |
+
# 16 residual blocks
|
72 |
+
for _ in range(num_of_residual_blocks):
|
73 |
+
x_new = ResBlock(x_new)
|
74 |
+
|
75 |
+
x_new = layers.Conv2D(num_filters, 3, padding="same")(x_new)
|
76 |
+
x = layers.Add()([x, x_new])
|
77 |
+
|
78 |
+
x = Upsampling(x)
|
79 |
+
x = layers.Conv2D(3, 3, padding="same")(x)
|
80 |
+
|
81 |
+
output_layer = layers.Rescaling(scale=255)(x)
|
82 |
+
return EDSRModel(input_layer, output_layer)
|
83 |
+
|
84 |
+
|
85 |
+
# Define PSNR metric
|
86 |
+
|
87 |
+
def PSNR(super_resolution, high_resolution):
|
88 |
+
"""Compute the peak signal-to-noise ratio, measures quality of image."""
|
89 |
+
# Max value of pixel is 255
|
90 |
+
psnr_value = tf.image.psnr(high_resolution, super_resolution, max_val=255)[0]
|
91 |
+
return psnr_value
|
92 |
+
|
93 |
+
custom_objects = {"EDSRModel":EDSRModel}
|
94 |
+
|
95 |
+
with keras.utils.custom_object_scope(custom_objects):
|
96 |
+
new_model = keras.models.load_model("./trained.h5", custom_objects={'PSNR':PSNR})
|
97 |
+
|
98 |
+
|
99 |
+
def process_image(img):
|
100 |
+
lowres = tf.convert_to_tensor(img, dtype=tf.uint8)
|
101 |
+
lowres = tf.image.random_crop(lowres, (150, 150, 3))
|
102 |
+
preds = new_model.predict_step(lowres)
|
103 |
+
preds = preds.numpy()
|
104 |
+
lowres = lowres.numpy()
|
105 |
+
return (lowres, preds)
|
106 |
+
|
107 |
+
image = gr.inputs.Image()
|
108 |
+
image_out = gr.outputs.Image()
|
109 |
+
|
110 |
+
markdown_part = """
|
111 |
+
|
112 |
+
Model Link - https://huggingface.co/keras-io/EDSR
|
113 |
+
|
114 |
+
"""
|
115 |
+
|
116 |
+
examples = [["./examples/1.png"]]
|
117 |
+
|
118 |
+
gr.Interface(
|
119 |
+
process_image,
|
120 |
+
title="EDSR - Enhanced Deep Residual Networks for Single Image Super-Resolution",
|
121 |
+
description="SuperResolution",
|
122 |
+
inputs = image,
|
123 |
+
examples = examples,
|
124 |
+
outputs = gr.Gallery(label="Outputs, First image is low res, next one is High Res",visible=True),
|
125 |
+
article = markdown_part,
|
126 |
+
interpretation='default',
|
127 |
+
allow_flagging='never'
|
128 |
+
).launch(debug=True)
|
examples/1.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
scikit-image
|
2 |
+
tensorflow
|
3 |
+
keras
|
4 |
+
gradio==3.0.5
|
trained.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c89499b79222015964a9f4e29f16801a6e987acdef00e6865c80141cb9e08150
|
3 |
+
size 18563184
|