NebulOS / src /genetics.py
fracapuano
add files via upload
81a5d0a
raw
history blame
13.8 kB
from typing import Iterable, Callable, Tuple, List, Union, Dict
import numpy as np
from copy import deepcopy as copy
from .utils import *
from itertools import chain
from abc import abstractproperty, abstractmethod
from .hw_nats_fast_interface import HW_NATS_FastInterface
class Individual:
"""
Base Class for all individuals in the population.
Base class attributes are the genotype identifying the individual (and, therefore, the network) and its
index within the search space it is drawn from.
"""
def __init__(self, genotype:List[str], index:int):
self._genotype = genotype
self.index=index
self._fitness = None
@abstractproperty
def genotype(self):
"""This class is used to define the network architecture."""
raise NotImplementedError("Implement this property in child classes!")
@abstractproperty
def fitness(self):
"""This class is used to define the fitness of the individual."""
raise NotImplementedError("Implement this property in child classes!")
@abstractmethod
def update_idx(self):
"""Update the index of the individual in the population"""
raise NotImplementedError("Implement this method in child classes!")
@abstractmethod
def update_genotype(self, new_genotype:List[str]):
"""Update current genotype with new one. When doing so, also the network field is updated"""
raise NotImplementedError("Implement this method in child classes!")
@abstractmethod
def update_fitness(self, metric:Callable, attribute:str="net"):
"""Update the current value of fitness using provided metric"""
raise NotImplementedError("Implement this method in child classes!")
class FastIndividual(Individual):
"""
Fast individuals are used in the context of age-regularized genetic algorithms and, therefore, are
characterized by an additional field, i.e. age.
"""
def __init__(
self,
genotype:List[str],
index:int,
genotype_to_idx:Dict[str, int],
age:int=0):
# init parent class
super().__init__(genotype, index)
self.age = age
self.genotype_to_idx = genotype_to_idx
@property
def genotype(self):
return self._genotype
@property
def fitness(self):
return self._fitness
def update_idx(self):
self.index = self.genotype_to_idx["/".join(self._genotype)]
def update_genotype(self, new_genotype:List[str]):
"""Update current genotype with new one. When doing so, also the network field is updated"""
self._genotype = new_genotype
self.update_idx()
def update_fitness(self, metric:Callable, attribute:str="net"):
"""Update the current value of fitness using provided metric"""
self._fitness = metric(getattr(self, attribute))
class Genetic:
def __init__(
self,
genome:Iterable[str],
searchspace:HW_NATS_FastInterface,
strategy:Tuple[str, str]="comma",
tournament_size:int=5):
self.genome = set(genome) if not isinstance(genome, set) else genome
self.strategy = strategy
self.tournament_size = tournament_size
self.searchspace = searchspace
def tournament(self, population:Iterable[Individual]) -> Iterable[Individual]:
"""
Return tournament, i.e. a random subset of population of size tournament size.
Sampling is done without replacement to ensure diversity inside the actual tournament.
"""
return np.random.choice(a=population, size=self.tournament_size, replace=False).tolist()
def obtain_parents(self, population:Iterable[Individual], n_parents:int=2) -> Iterable[Individual]:
"""Obtain n_parents from population. Parents are defined as the fittest individuals in n_parents tournaments"""
tournament = self.tournament(population = population)
# parents are defined as fittest individuals in tournaments
parents = sorted(tournament, key = lambda individual: individual.fitness, reverse=True)[:n_parents]
return parents
def mutate(self,
individual:Individual,
n_loci:int=1,
genes_prob:Tuple[None, List[float]]=None) -> Individual:
"""Applies mutation to a given individual"""
for _ in range(n_loci):
mutant_genotype = copy(individual.genotype)
# select a locus in the genotype (that is, where mutation will occurr)
if genes_prob is None: # uniform probability over all loci
mutant_locus = np.random.randint(low=0, high=len(mutant_genotype))
else: # custom probability distrubution over which locus to mutate
mutant_locus = np.random.choice(mutant_genotype, p=genes_prob)
# mapping the locus to the actual gene that will effectively change
mutant_gene = mutant_genotype[mutant_locus]
operation, level = mutant_gene.split("~") # splits the gene into operation and level
# mutation changes gene, so the current one must be removed from the pool of candidate genes
mutations = self.genome.difference([operation])
# overwriting the mutant gene with a new one - probability of chosing how to mutate should be selected as well
mutant_genotype[mutant_locus] = np.random.choice(a=list(mutations)) + f"~{level}"
mutant_individual = FastIndividual(genotype=None, genotype_to_idx=self.searchspace.architecture_to_index, index=None)
mutant_individual.update_genotype(mutant_genotype)
return mutant_individual
def recombine(self, individuals:Iterable[Individual], P_parent1:float=0.5) -> Individual:
"""Performs recombination of two given `individuals`"""
if len(individuals) != 2:
raise ValueError("Number of individuals cannot be different from 2!")
individual1, individual2 = individuals
recombinant_genotype = [None for _ in range(len(individual1.genotype))]
for locus_idx, (gene_1, gene_2) in enumerate(zip(individual1.genotype, individual2.genotype)):
# chose genes from parent1 according to P_parent1
recombinant_genotype[locus_idx] = gene_1 if np.random.random() <= P_parent1 else gene_2
recombinant = FastIndividual(genotype=None, genotype_to_idx=self.searchspace.architecture_to_index, index=None)
recombinant.update_genotype(list(recombinant_genotype))
return recombinant
class Population:
def __init__(self,
searchspace:object,
init_population:Union[bool, Iterable]=True,
n_individuals:int=20,
normalization:str='dynamic'):
self.searchspace = searchspace
if init_population is True:
self._population = generate_population(searchspace_interface=searchspace, n_individuals=n_individuals)
else:
self._population = init_population
self.oldest = None
self.worst_n = None
self.normalization = normalization.lower()
def __iter__(self):
for i in self._population:
yield i
@property
def individuals(self):
return self._population
def update_population(self, new_population:Iterable[Individual]):
"""Overwrites current population with new one stored in `new_population`"""
if all([isinstance(el, Individual) for el in new_population]):
del self._population
self._population = new_population
else:
raise ValueError("new_population is not an Iterable of `Individual` datatype!")
def fittest_n(self, n:int=1):
"""Return first `n` individuals based on fitness value"""
return sorted(self._population, key=lambda individual: individual.fitness, reverse=True)[:n]
def update_ranking(self):
"""Updates the ranking in the population in light of fitness value"""
sorted_individuals = sorted(self._population, key=lambda individual: individual.fitness, reverse=True)
# ranking in light of individuals
for ranking, individual in enumerate(sorted_individuals):
individual.update_ranking(new_rank=ranking)
def update_fitness(self, fitness_function:Callable):
"""Updates the fitness value of individuals in the population"""
for individual in self.individuals:
fitness_function(individual)
def apply_on_individuals(self, function:Callable)->Union[Iterable, None]:
"""Applies a function on each individual in the population
Args:
function (Callable): function to apply on each individual. Must return an object of class Individual.
Returns:
Union[Iterable, None]: Iterable when inplace=False represents the individuals with function applied.
None represents the output when inplace=True (hence function is applied on the
actual population.
"""
self._population = [function(individual) for individual in self._population]
def set_extremes(self, score:str):
"""Set the maximal&minimal value in the population for the score 'score' (must be a class attribute)"""
if self.normalization == 'dynamic':
# accessing to the score of each individual
scores = [getattr(ind, score) for ind in self.individuals]
min_value = min(scores)
max_value = max(scores)
elif self.normalization == 'minmax':
# extreme_scores is a 2x`number_of_scores`
min_value, max_value = self.extreme_scores[:, self.scores_dict[score]]
elif self.normalization == 'standard':
# extreme_scores is a 2x`number_of_scores`
mean_value, std_value = self.extreme_scores[:, self.scores_dict[score]]
if self.normalization in ['minmax', 'dynamic']:
setattr(self, f"max_{score}", max_value)
setattr(self, f"min_{score}", min_value)
else:
setattr(self, f"mean_{score}", mean_value)
setattr(self, f"std_{score}", std_value)
def age(self):
"""Embeds ageing into the process"""
def individuals_ageing(individual):
individual.age += 1
return individual
self.apply_on_individuals(function=individuals_ageing)
def add_to_population(self, new_individuals:Iterable[Individual]):
"""Add new_individuals to population"""
self._population = list(chain(self.individuals, new_individuals))
def remove_from_population(self, attribute:str="fitness", n:int=1, ascending:bool=True):
"""
Remove first/last `n` elements from sorted population population in `ascending/descending`
order based on the value of `attribute`.
"""
# check that input attribute is an attribute of all the individuals
if not all([hasattr(el, attribute) for el in self.individuals]):
raise ValueError(f"Attribute '{attribute}' is not an attribute of all the individuals!")
# sort the population based on the value of attribute
sorted_population = sorted(self.individuals, key=lambda ind: getattr(ind, attribute), reverse=False if ascending else True)
# new population is old population minus the `n` worst individuals with respect to `attribute`
self.update_population(sorted_population[n:])
def update_oldest(self, candidate:Individual):
"""Updates oldest individual in the population"""
if candidate.age >= self.oldest.age:
self.oldest = candidate
else:
pass
def update_worst_n(self, candidate:Individual, attribute:str="fitness", n:int=2):
"""Updates worst_n elements in the population"""
if hasattr(candidate, attribute):
if any([getattr(candidate, attribute) < getattr(worst, attribute) for worst in self.worst_n]):
# candidate is worse than one of the worst individuals
bad_individuals = self.worst_n + candidate
# sort in increasing values of fitness
bad_sorted = sorted(bad_individuals, lambda ind: getattr(ind, attribute))
self.worst_n = bad_sorted[:n] # return new worst individuals
def set_oldest(self):
"""Sets oldest individual in population"""
self.oldest = max(self.individuals, key=lambda ind: ind.age)
def set_worst_n(self, attribute:str="fitness", n:int=2):
"""Sets worst n elements based on the value of arbitrary attribute"""
self.worst_n = sorted(self.individuals, key=lambda ind: getattr(ind, attribute))[:n]
def generate_population(searchspace_interface:HW_NATS_FastInterface, n_individuals:int=20)->list:
"""This function generates a population of FastInviduals based on the searchspace interface"""
# at first generate full cell-structure and unique network indices
cells, indices = searchspace_interface.generate_random_samples(n_samples=n_individuals)
# mapping strings to list of genes (~genomes)
genotypes = map(lambda cell: searchspace_interface.architecture_to_list(cell), cells)
# turn full architecture and cell-structure into genetic population individual
population = [
FastIndividual(genotype=genotype, index=index, genotype_to_idx=searchspace_interface.architecture_to_index)
for genotype, index in zip(genotypes, indices)
]
return population