File size: 2,669 Bytes
81a5d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "with open(\"data/nebuloss.json\", \"r\") as f:\n",
    "    data = json.load(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "def split_dict(d, n):\n",
    "    \"\"\"\n",
    "    Splits a dictionary into n dictionaries with almost equal number of items.\n",
    "\n",
    "    Parameters:\n",
    "    - d (dict): The input dictionary.\n",
    "    - n (int): The number of dictionaries to split into.\n",
    "\n",
    "    Returns:\n",
    "    - list of dict: A list of n dictionaries.\n",
    "    \"\"\"\n",
    "    items = list(d.items())\n",
    "    length = len(items)\n",
    "    \n",
    "    # Calculate the size of each chunk\n",
    "    chunk_size = length // n\n",
    "    remainder = length % n\n",
    "\n",
    "    # Split the items into chunks\n",
    "    chunks = []\n",
    "    start = 0\n",
    "\n",
    "    for i in range(n):\n",
    "        if remainder:\n",
    "            end = start + chunk_size + 1\n",
    "            remainder -= 1\n",
    "        else:\n",
    "            end = start + chunk_size\n",
    "        chunks.append(dict(items[start:end]))\n",
    "        start = end\n",
    "\n",
    "    return chunks\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "chunk_1, chunk_2, chunk_3, chunk_4 = split_dict(data, n=4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(\"data/nebuloss_1.json\", \"w\") as f:\n",
    "    json.dump(chunk_1, f, indent=4)\n",
    "with open(\"data/nebuloss_2.json\", \"w\") as f:\n",
    "    json.dump(chunk_2, f, indent=4)\n",
    "with open(\"data/nebuloss_3.json\", \"w\") as f:\n",
    "    json.dump(chunk_3, f, indent=4)\n",
    "with open(\"data/nebuloss_4.json\", \"w\") as f:\n",
    "    json.dump(chunk_4, f, indent=4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "hackenv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}