fmagot01's picture
Update app.py
3e6c924
import gradio as gr
import torch
from transformers import pipeline
from timeit import default_timer as timer
username = "fmagot01" ## Complete your username
model_id = f"{username}/distil-wav2vec2-finetuned-giga-speech"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe = pipeline("audio-classification", model=model_id, device=device)
def predict_trunc(filepath):
preprocessed = pipe.preprocess(filepath)
truncated = pipe.feature_extractor.pad(preprocessed,truncation=True, max_length = 16_000*30)
model_outputs = pipe.forward(truncated)
outputs = pipe.postprocess(model_outputs)
return outputs
def classify_audio(filepath):
"""
Goes from
[{'score': 0.8339303731918335, 'label': 'Gaming'},
{'score': 0.11914275586605072, 'label': 'Audiobook'},]
to
{"Gaming": 0.8339303731918335, "Audiobook":0.11914275586605072}
"""
start_time = timer()
#preds = pipe(filepath)
preds = predict_trunc(filepath)
outputs = {}
pred_time = round(timer() - start_time, 5)
for p in preds:
outputs[p["label"]] = p["score"]
return outputs, pred_time
#return outputs
title = "Classifier of Audio Files"
description = """
This demo shows the application of the [distil-wav2vec2](https://huggingface.co/OthmaneJ/distil-wav2vec2) model fine tuned to the [gigaspeech](https://huggingface.co/datasets/speechcolab/gigaspeech) dataset. It will classify the audio provided to the domain of the content in it.
"""
filenames = ["audiobook.wav", "arts.wav", "news.wav"]
filenames = [[f"./{f}"] for f in filenames]
demo = gr.Interface(
fn=classify_audio,
inputs=gr.Audio(type="filepath"),
outputs=[gr.outputs.Label(label="Predictions"),
gr.Number(label="Prediction time (s)")
],
title=title,
description=description,
examples=filenames,
)
demo.launch()