Spaces:
Sleeping
Sleeping
File size: 11,473 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
from .minigrid import *
def reject_next_to(env, pos):
"""
Function to filter out object positions that are right next to
the agent's starting point
"""
sx, sy = env.agent_pos
x, y = pos
d = abs(sx - x) + abs(sy - y)
return d < 2
class Room:
def __init__(
self,
top,
size
):
# Top-left corner and size (tuples)
self.top = top
self.size = size
# List of door objects and door positions
# Order of the doors is right, down, left, up
self.doors = [None] * 4
self.door_pos = [None] * 4
# List of rooms adjacent to this one
# Order of the neighbors is right, down, left, up
self.neighbors = [None] * 4
# Indicates if this room is behind a locked door
self.locked = False
# List of objects contained
self.objs = []
def rand_pos(self, env):
topX, topY = self.top
sizeX, sizeY = self.size
return env._randPos(
topX + 1, topX + sizeX - 1,
topY + 1, topY + sizeY - 1
)
def pos_inside(self, x, y):
"""
Check if a position is within the bounds of this room
"""
topX, topY = self.top
sizeX, sizeY = self.size
if x < topX or y < topY:
return False
if x >= topX + sizeX or y >= topY + sizeY:
return False
return True
class RoomGrid(MiniGridEnv):
"""
Environment with multiple rooms and random objects.
This is meant to serve as a base class for other environments.
"""
def __init__(
self,
room_size=7,
num_rows=3,
num_cols=3,
max_steps=100,
seed=0
):
assert room_size > 0
assert room_size >= 3
assert num_rows > 0
assert num_cols > 0
self.room_size = room_size
self.num_rows = num_rows
self.num_cols = num_cols
height = (room_size - 1) * num_rows + 1
width = (room_size - 1) * num_cols + 1
# By default, this environment has no mission
self.mission = ''
super().__init__(
width=width,
height=height,
max_steps=max_steps,
see_through_walls=False,
seed=seed
)
def room_from_pos(self, x, y):
"""Get the room a given position maps to"""
assert x >= 0
assert y >= 0
i = x // (self.room_size-1)
j = y // (self.room_size-1)
assert i < self.num_cols
assert j < self.num_rows
return self.room_grid[j][i]
def get_room(self, i, j):
assert i < self.num_cols
assert j < self.num_rows
return self.room_grid[j][i]
def _gen_grid(self, width, height):
# Create the grid
self.grid = Grid(width, height, self.nb_obj_dims)
self.room_grid = []
# For each row of rooms
for j in range(0, self.num_rows):
row = []
# For each column of rooms
for i in range(0, self.num_cols):
room = Room(
(i * (self.room_size-1), j * (self.room_size-1)),
(self.room_size, self.room_size)
)
row.append(room)
# Generate the walls for this room
self.grid.wall_rect(*room.top, *room.size)
self.room_grid.append(row)
# For each row of rooms
for j in range(0, self.num_rows):
# For each column of rooms
for i in range(0, self.num_cols):
room = self.room_grid[j][i]
x_l, y_l = (room.top[0] + 1, room.top[1] + 1)
x_m, y_m = (room.top[0] + room.size[0] - 1, room.top[1] + room.size[1] - 1)
# Door positions, order is right, down, left, up
if i < self.num_cols - 1:
room.neighbors[0] = self.room_grid[j][i+1]
room.door_pos[0] = (x_m, self._rand_int(y_l, y_m))
if j < self.num_rows - 1:
room.neighbors[1] = self.room_grid[j+1][i]
room.door_pos[1] = (self._rand_int(x_l, x_m), y_m)
if i > 0:
room.neighbors[2] = self.room_grid[j][i-1]
room.door_pos[2] = room.neighbors[2].door_pos[0]
if j > 0:
room.neighbors[3] = self.room_grid[j-1][i]
room.door_pos[3] = room.neighbors[3].door_pos[1]
# The agent starts in the middle, facing right
self.agent_pos = (
(self.num_cols // 2) * (self.room_size-1) + (self.room_size // 2),
(self.num_rows // 2) * (self.room_size-1) + (self.room_size // 2)
)
self.agent_dir = 0
def place_in_room(self, i, j, obj):
"""
Add an existing object to room (i, j)
"""
room = self.get_room(i, j)
pos = self.place_obj(
obj,
room.top,
room.size,
reject_fn=reject_next_to,
max_tries=1000
)
room.objs.append(obj)
return obj, pos
def add_object(self, i, j, kind=None, color=None):
"""
Add a new object to room (i, j)
"""
if kind == None:
kind = self._rand_elem(['key', 'ball', 'box'])
if color == None:
color = self._rand_color()
assert kind in ['key', 'ball', 'box']
if kind == 'key':
obj = Key(color)
elif kind == 'ball':
obj = Ball(color)
elif kind == 'box':
obj = Box(color)
return self.place_in_room(i, j, obj)
def add_door(self, i, j, door_idx=None, color=None, locked=None):
"""
Add a door to a room, connecting it to a neighbor
"""
room = self.get_room(i, j)
if door_idx == None:
# Need to make sure that there is a neighbor along this wall
# and that there is not already a door
while True:
door_idx = self._rand_int(0, 4)
if room.neighbors[door_idx] and room.doors[door_idx] is None:
break
if color == None:
color = self._rand_color()
if locked is None:
locked = self._rand_bool()
assert room.doors[door_idx] is None, "door already exists"
room.locked = locked
door = Door(color, is_locked=locked)
pos = room.door_pos[door_idx]
self.grid.set(*pos, door)
door.cur_pos = pos
neighbor = room.neighbors[door_idx]
room.doors[door_idx] = door
neighbor.doors[(door_idx+2) % 4] = door
return door, pos
def remove_wall(self, i, j, wall_idx):
"""
Remove a wall between two rooms
"""
room = self.get_room(i, j)
assert wall_idx >= 0 and wall_idx < 4
assert room.doors[wall_idx] is None, "door exists on this wall"
assert room.neighbors[wall_idx], "invalid wall"
neighbor = room.neighbors[wall_idx]
tx, ty = room.top
w, h = room.size
# Ordering of walls is right, down, left, up
if wall_idx == 0:
for i in range(1, h - 1):
self.grid.set(tx + w - 1, ty + i, None)
elif wall_idx == 1:
for i in range(1, w - 1):
self.grid.set(tx + i, ty + h - 1, None)
elif wall_idx == 2:
for i in range(1, h - 1):
self.grid.set(tx, ty + i, None)
elif wall_idx == 3:
for i in range(1, w - 1):
self.grid.set(tx + i, ty, None)
else:
assert False, "invalid wall index"
# Mark the rooms as connected
room.doors[wall_idx] = True
neighbor.doors[(wall_idx+2) % 4] = True
def place_agent(self, i=None, j=None, rand_dir=True):
"""
Place the agent in a room
"""
if i == None:
i = self._rand_int(0, self.num_cols)
if j == None:
j = self._rand_int(0, self.num_rows)
room = self.room_grid[j][i]
# Find a position that is not right in front of an object
while True:
super().place_agent(room.top, room.size, rand_dir, max_tries=1000)
front_cell = self.grid.get(*self.front_pos)
if front_cell is None or front_cell.type is 'wall':
break
return self.agent_pos
def connect_all(self, door_colors=COLOR_NAMES, max_itrs=5000):
"""
Make sure that all rooms are reachable by the agent from its
starting position
"""
start_room = self.room_from_pos(*self.agent_pos)
added_doors = []
def find_reach():
reach = set()
stack = [start_room]
while len(stack) > 0:
room = stack.pop()
if room in reach:
continue
reach.add(room)
for i in range(0, 4):
if room.doors[i]:
stack.append(room.neighbors[i])
return reach
num_itrs = 0
while True:
# This is to handle rare situations where random sampling produces
# a level that cannot be connected, producing in an infinite loop
if num_itrs > max_itrs:
raise RecursionError('connect_all failed')
num_itrs += 1
# If all rooms are reachable, stop
reach = find_reach()
if len(reach) == self.num_rows * self.num_cols:
break
# Pick a random room and door position
i = self._rand_int(0, self.num_cols)
j = self._rand_int(0, self.num_rows)
k = self._rand_int(0, 4)
room = self.get_room(i, j)
# If there is already a door there, skip
if not room.door_pos[k] or room.doors[k]:
continue
if room.locked or room.neighbors[k].locked:
continue
color = self._rand_elem(door_colors)
door, _ = self.add_door(i, j, k, color, False)
added_doors.append(door)
return added_doors
def add_distractors(self, i=None, j=None, num_distractors=10, all_unique=True):
"""
Add random objects that can potentially distract/confuse the agent.
"""
# Collect a list of existing objects
objs = []
for row in self.room_grid:
for room in row:
for obj in room.objs:
objs.append((obj.type, obj.color))
# List of distractors added
dists = []
while len(dists) < num_distractors:
color = self._rand_elem(COLOR_NAMES)
type = self._rand_elem(['key', 'ball', 'box'])
obj = (type, color)
if all_unique and obj in objs:
continue
# Add the object to a random room if no room specified
room_i = i
room_j = j
if room_i == None:
room_i = self._rand_int(0, self.num_cols)
if room_j == None:
room_j = self._rand_int(0, self.num_rows)
dist, pos = self.add_object(room_i, room_j, *obj)
objs.append(obj)
dists.append(dist)
return dists
|