Spaces:
Running
Running
File size: 3,227 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
#!/usr/bin/env python3
import sys
from utils import *
from gym_minigrid.parametric_env import *
class DummyTreeParamEnv(gym.Env):
"""
Meta-Environment containing all other environment (multi-task learning)
"""
def __init__(
self,
):
# construct the tree
self.parameter_tree = self.construct_tree()
self.parameter_tree.print_tree()
def draw_tree(self, ignore_labels=[], folded_nodes=[]):
self.parameter_tree.draw_tree("viz/param_tree_{}".format(self.spec.id), ignore_labels=ignore_labels, folded_nodes=folded_nodes)
def print_tree(self):
self.parameter_tree.print_tree()
def construct_tree(self):
tree = ParameterTree()
env_type_nd = tree.add_node("Env_type", type="param")
# Information seeking
inf_seeking_nd = tree.add_node("Information_seeking", parent=env_type_nd, type="value")
prag_fr_compl_nd = tree.add_node("Introductory_sequence", parent=inf_seeking_nd, type="param")
tree.add_node("Eye_contact", parent=prag_fr_compl_nd, type="value")
# scaffolding
scaffolding_nd = tree.add_node("Scaffolding", parent=inf_seeking_nd, type="param")
scaffolding_N_nd = tree.add_node("N", parent=scaffolding_nd, type="value")
cue_type_nd = tree.add_node("Cue_type", parent=scaffolding_N_nd, type="param")
# tree.add_node("Language_Color", parent=cue_type_nd, type="value")
# tree.add_node("Language_Feedback", parent=cue_type_nd, type="value")
tree.add_node("Pointing", parent=cue_type_nd, type="value")
# N_bo_nd = tree.add_node("N", parent=inf_seeking_nd, type="param")
# tree.add_node("2", parent=N_bo_nd, type="value")
problem_nd = tree.add_node("Problem", parent=inf_seeking_nd, type="param")
tree.add_node("Boxes", parent=problem_nd, type="value")
tree.add_node("Switches", parent=problem_nd, type="value")
tree.add_node("Marbles", parent=problem_nd, type="value")
tree.add_node("Generators", parent=problem_nd, type="value")
tree.add_node("Doors", parent=problem_nd, type="value")
tree.add_node("Levers", parent=problem_nd, type="value")
return tree
filename = sys.argv[1]
if len(sys.argv) > 2:
env_name = sys.argv[2]
env = gym.make(env_name)
else:
env = DummyTreeParamEnv()
# draw tree
folded_nodes = [
# "Information_Seeking",
# "Perspective_Inference",
]
# selected_parameters_labels = {
# "Env_type": "Information_Seeking",
# "Distractor": "Yes",
# "Problem": "Boxes",
# }
env.parameter_tree.draw_tree(
filename=f"viz/{filename}",
ignore_labels=["Num_of_colors"],
# selected_parameters=selected_parameters_labels,
folded_nodes=folded_nodes,
label_parser={
"Scaffolding": "Help"
}
)
# for i in range(3):
# params = env.parameter_tree.sample_env_params()
# selected_parameters_labels = {k.label: v.label for k, v in params.items()}
#
# env.parameter_tree.draw_tree(
# filename=f"viz/{filename}_{i}",
# ignore_labels=["Num_of_colors"],
# selected_parameters=selected_parameters_labels,
# folded_nodes=folded_nodes,
# )
#
|