image-captioning / model.py
ydshieh
fix syntax
1fc53da
raw
history blame
2.71 kB
import os, sys, shutil
import numpy as np
from PIL import Image
import jax
from transformers import ViTFeatureExtractor
from transformers import GPT2Tokenizer
from huggingface_hub import hf_hub_download
from googletrans import Translator
translator = Translator()
current_path = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_path)
# Main model - ViTGPT2LM
from vit_gpt2.modeling_flax_vit_gpt2_lm import FlaxViTGPT2LMForConditionalGeneration
# create target model directory
model_dir = './models/'
os.makedirs(model_dir, exist_ok=True)
# copy config file
filepath = hf_hub_download("flax-community/vit-gpt2", "checkpoints/ckpt_5/config.json")
shutil.copyfile(filepath, os.path.join(model_dir, 'config.json'))
# copy model file
filepath = hf_hub_download("flax-community/vit-gpt2", "checkpoints/ckpt_5/flax_model.msgpack")
shutil.copyfile(filepath, os.path.join(model_dir, 'flax_model.msgpack'))
flax_vit_gpt2_lm = FlaxViTGPT2LMForConditionalGeneration.from_pretrained(model_dir)
vit_model_name = 'google/vit-base-patch16-224-in21k'
feature_extractor = ViTFeatureExtractor.from_pretrained(vit_model_name)
gpt2_model_name = 'asi/gpt-fr-cased-small'
tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name)
max_length = 32
num_beams = 8
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
@jax.jit
def predict_fn(pixel_values):
return flax_vit_gpt2_lm.generate(pixel_values, **gen_kwargs)
def predict(image):
# batch dim is added automatically
encoder_inputs = feature_extractor(images=image, return_tensors="jax")
pixel_values = encoder_inputs.pixel_values
# generation
generation = predict_fn(pixel_values)
token_ids = np.array(generation.sequences)[0]
caption = tokenizer.decode(token_ids)
caption = caption.replace('<s>', '').replace('</s>', '').replace('<pad>', '')
caption = caption.replace("à l'arrière-plan", '').replace("Une photo en noir et blanc d'", '').replace("Une photo noire et blanche d'", '').replace("en arrière-plan", '').replace("Un gros plan d'", '').replace("un gros plan d'", '').replace("Une image d'", '')
while ' ' in caption:
caption = caption.replace(' ', ' ')
caption = caption.strip()
if caption:
caption = caption[0].upper() + caption[1:]
return caption
def compile():
image_path = 'samples/val_000000039769.jpg'
image = Image.open(image_path)
caption = predict(image)
image.close()
def predict_dummy(image):
return 'dummy caption!'
compile()
sample_dir = './samples/'
sample_fns = tuple([f"{int(f.replace('COCO_val2014_', '').replace('.jpg', ''))}.jpg" for f in os.listdir(sample_dir) if f.startswith('COCO_val2014_')])