Spaces:
Runtime error
Runtime error
import os, sys, shutil | |
import numpy as np | |
from PIL import Image | |
import jax | |
from transformers import ViTFeatureExtractor | |
from transformers import GPT2Tokenizer | |
from huggingface_hub import hf_hub_download | |
from googletrans import Translator | |
translator = Translator() | |
current_path = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(current_path) | |
# Main model - ViTGPT2LM | |
from vit_gpt2.modeling_flax_vit_gpt2_lm import FlaxViTGPT2LMForConditionalGeneration | |
# create target model directory | |
model_dir = './models/' | |
os.makedirs(model_dir, exist_ok=True) | |
# copy config file | |
filepath = hf_hub_download("flax-community/vit-gpt2", "checkpoints/ckpt_5/config.json") | |
shutil.copyfile(filepath, os.path.join(model_dir, 'config.json')) | |
# copy model file | |
filepath = hf_hub_download("flax-community/vit-gpt2", "checkpoints/ckpt_5/flax_model.msgpack") | |
shutil.copyfile(filepath, os.path.join(model_dir, 'flax_model.msgpack')) | |
flax_vit_gpt2_lm = FlaxViTGPT2LMForConditionalGeneration.from_pretrained(model_dir) | |
vit_model_name = 'google/vit-base-patch16-224-in21k' | |
feature_extractor = ViTFeatureExtractor.from_pretrained(vit_model_name) | |
gpt2_model_name = 'asi/gpt-fr-cased-small' | |
tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name) | |
max_length = 32 | |
num_beams = 8 | |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
def predict_fn(pixel_values): | |
return flax_vit_gpt2_lm.generate(pixel_values, **gen_kwargs) | |
def predict(image): | |
# batch dim is added automatically | |
encoder_inputs = feature_extractor(images=image, return_tensors="jax") | |
pixel_values = encoder_inputs.pixel_values | |
# generation | |
generation = predict_fn(pixel_values) | |
token_ids = np.array(generation.sequences)[0] | |
caption = tokenizer.decode(token_ids) | |
caption = caption.replace('<s>', '').replace('</s>', '').replace('<pad>', '') | |
caption = caption.replace("à l'arrière-plan", '').replace("Une photo en noir et blanc d'", '').replace("Une photo noire et blanche d'", '').replace("en arrière-plan", '').replace("Un gros plan d'", '').replace("un gros plan d'", '').replace("Une image d'", '') | |
while ' ' in caption: | |
caption = caption.replace(' ', ' ') | |
caption = caption.strip() | |
if caption: | |
caption = caption[0].upper() + caption[1:] | |
return caption | |
def compile(): | |
image_path = 'samples/val_000000039769.jpg' | |
image = Image.open(image_path) | |
caption = predict(image) | |
image.close() | |
def predict_dummy(image): | |
return 'dummy caption!' | |
compile() | |
sample_dir = './samples/' | |
sample_fns = tuple([f"{int(f.replace('COCO_val2014_', '').replace('.jpg', ''))}.jpg" for f in os.listdir(sample_dir) if f.startswith('COCO_val2014_')]) | |