Spaces:
Running
on
A10G
Running
on
A10G
remove streaming
Browse files
app.py
CHANGED
@@ -95,13 +95,12 @@ def inference(
|
|
95 |
top_p,
|
96 |
repetition_penalty,
|
97 |
temperature,
|
98 |
-
streaming=False,
|
99 |
):
|
100 |
if args.max_gradio_length > 0 and len(text) > args.max_gradio_length:
|
101 |
return (
|
102 |
None,
|
103 |
None,
|
104 |
-
"Text is too long, please keep it under {} characters.".format(
|
105 |
args.max_gradio_length
|
106 |
),
|
107 |
)
|
@@ -137,16 +136,12 @@ def inference(
|
|
137 |
)
|
138 |
)
|
139 |
|
140 |
-
if streaming:
|
141 |
-
yield wav_chunk_header(), None, None
|
142 |
-
|
143 |
segments = []
|
144 |
|
145 |
while True:
|
146 |
result: WrappedGenerateResponse = response_queue.get()
|
147 |
if result.status == "error":
|
148 |
-
|
149 |
-
break
|
150 |
|
151 |
result: GenerateResponse = result.response
|
152 |
if result.action == "next":
|
@@ -168,9 +163,6 @@ def inference(
|
|
168 |
fake_audios = fake_audios.float().cpu().numpy()
|
169 |
segments.append(fake_audios)
|
170 |
|
171 |
-
if streaming:
|
172 |
-
yield (fake_audios * 32768).astype(np.int16).tobytes(), None, None
|
173 |
-
|
174 |
if len(segments) == 0:
|
175 |
return (
|
176 |
None,
|
@@ -180,9 +172,9 @@ def inference(
|
|
180 |
),
|
181 |
)
|
182 |
|
183 |
-
#
|
184 |
audio = np.concatenate(segments, axis=0)
|
185 |
-
|
186 |
|
187 |
if torch.cuda.is_available():
|
188 |
torch.cuda.empty_cache()
|
|
|
95 |
top_p,
|
96 |
repetition_penalty,
|
97 |
temperature,
|
|
|
98 |
):
|
99 |
if args.max_gradio_length > 0 and len(text) > args.max_gradio_length:
|
100 |
return (
|
101 |
None,
|
102 |
None,
|
103 |
+
i18n("Text is too long, please keep it under {} characters.").format(
|
104 |
args.max_gradio_length
|
105 |
),
|
106 |
)
|
|
|
136 |
)
|
137 |
)
|
138 |
|
|
|
|
|
|
|
139 |
segments = []
|
140 |
|
141 |
while True:
|
142 |
result: WrappedGenerateResponse = response_queue.get()
|
143 |
if result.status == "error":
|
144 |
+
return None, None, build_html_error_message(result.response)
|
|
|
145 |
|
146 |
result: GenerateResponse = result.response
|
147 |
if result.action == "next":
|
|
|
163 |
fake_audios = fake_audios.float().cpu().numpy()
|
164 |
segments.append(fake_audios)
|
165 |
|
|
|
|
|
|
|
166 |
if len(segments) == 0:
|
167 |
return (
|
168 |
None,
|
|
|
172 |
),
|
173 |
)
|
174 |
|
175 |
+
# Return the final audio
|
176 |
audio = np.concatenate(segments, axis=0)
|
177 |
+
return None, (decoder_model.spec_transform.sample_rate, audio), None
|
178 |
|
179 |
if torch.cuda.is_available():
|
180 |
torch.cuda.empty_cache()
|