defaults: - base - _self_ project: text2semantic_finetune_dual_ar max_length: 4096 pretrained_ckpt_path: checkpoints/fish-speech-1.4 # Lightning Trainer trainer: accumulate_grad_batches: 1 gradient_clip_val: 1.0 gradient_clip_algorithm: "norm" max_steps: 1000 precision: bf16-true limit_val_batches: 10 val_check_interval: 100 # Dataset Configuration tokenizer: _target_: transformers.AutoTokenizer.from_pretrained pretrained_model_name_or_path: ${pretrained_ckpt_path} # Dataset Configuration train_dataset: _target_: fish_speech.datasets.semantic.AutoTextSemanticInstructionDataset proto_files: - data/protos tokenizer: ${tokenizer} causal: true max_length: ${max_length} use_speaker: false interactive_prob: 0.7 val_dataset: _target_: fish_speech.datasets.semantic.AutoTextSemanticInstructionDataset proto_files: - data/protos tokenizer: ${tokenizer} causal: true max_length: ${max_length} use_speaker: false interactive_prob: 0.7 data: _target_: fish_speech.datasets.semantic.SemanticDataModule train_dataset: ${train_dataset} val_dataset: ${val_dataset} num_workers: 4 batch_size: 8 tokenizer: ${tokenizer} max_length: ${max_length} # Model Configuration model: _target_: fish_speech.models.text2semantic.lit_module.TextToSemantic model: _target_: fish_speech.models.text2semantic.llama.BaseTransformer.from_pretrained path: ${pretrained_ckpt_path} load_weights: true max_length: ${max_length} lora_config: null optimizer: _target_: torch.optim.AdamW _partial_: true lr: 1e-4 weight_decay: 0 betas: [0.9, 0.95] eps: 1e-5 lr_scheduler: _target_: torch.optim.lr_scheduler.LambdaLR _partial_: true lr_lambda: _target_: fish_speech.scheduler.get_constant_schedule_with_warmup_lr_lambda _partial_: true num_warmup_steps: 10 # Callbacks callbacks: model_checkpoint: every_n_train_steps: ${trainer.val_check_interval}