# Base configuration for training a model paths: run_dir: results/${project} ckpt_dir: ${paths.run_dir}/checkpoints hydra: run: dir: ${paths.run_dir} # Lightning Trainer trainer: _target_: lightning.pytorch.trainer.Trainer default_root_dir: ${paths.run_dir} accelerator: gpu num_nodes: 1 devices: auto strategy: _target_: lightning.pytorch.strategies.DDPStrategy process_group_backend: nccl # This should be override when training on windows precision: bf16-mixed # disable validation by epoch end check_val_every_n_epoch: null val_check_interval: 5000 max_steps: 100_000 # Use torch.backends.cudnn.benchmark to speed up training benchmark: true # Callbacks callbacks: model_checkpoint: _target_: lightning.pytorch.callbacks.ModelCheckpoint dirpath: ${paths.ckpt_dir} filename: "step_{step:09d}" save_last: false # additionally always save an exact copy of the last checkpoint to a file last.ckpt save_top_k: 5 # save 5 latest checkpoints monitor: step # use step to monitor checkpoints mode: max # save the latest checkpoint with the highest global_step every_n_epochs: null # don't save checkpoints by epoch end every_n_train_steps: 5000 # save checkpoints every 5000 steps auto_insert_metric_name: false model_summary: _target_: lightning.pytorch.callbacks.ModelSummary max_depth: 2 # the maximum depth of layer nesting that the summary will include learning_rate_monitor: _target_: lightning.pytorch.callbacks.LearningRateMonitor logging_interval: step log_momentum: false grad_norm_monitor: _target_: fish_speech.callbacks.GradNormMonitor norm_type: 2 logging_interval: step # Logger logger: tensorboard: _target_: lightning.pytorch.loggers.tensorboard.TensorBoardLogger save_dir: "${paths.run_dir}/tensorboard/" name: null log_graph: false default_hp_metric: true prefix: "" # wandb: # _target_: lightning.pytorch.loggers.wandb.WandbLogger # # name: "" # name of the run (normally generated by wandb) # save_dir: "${paths.run_dir}" # offline: False # id: null # pass correct id to resume experiment! # anonymous: null # enable anonymous logging # project: "fish-speech" # log_model: False # upload lightning ckpts # prefix: "" # a string to put at the beginning of metric keys # # entity: "" # set to name of your wandb team # group: "" # tags: ["vq", "hq", "finetune"] # job_type: "" # Loop train: true test: false