import torch from torch.nn.utils.rnn import pad_sequence def slice_padding_fbank(speech, speech_lengths, vad_segments): speech_list = [] speech_lengths_list = [] for i, segment in enumerate(vad_segments): bed_idx = int(segment[0][0] * 16) end_idx = min(int(segment[0][1] * 16), speech_lengths[0]) speech_i = speech[0, bed_idx:end_idx] speech_lengths_i = end_idx - bed_idx speech_list.append(speech_i) speech_lengths_list.append(speech_lengths_i) feats_pad = pad_sequence(speech_list, batch_first=True, padding_value=0.0) speech_lengths_pad = torch.Tensor(speech_lengths_list).int() return feats_pad, speech_lengths_pad def slice_padding_audio_samples(speech, speech_lengths, vad_segments): speech_list = [] speech_lengths_list = [] intervals = [] for i, segment in enumerate(vad_segments): bed_idx = int(segment[0][0] * 16) end_idx = min(int(segment[0][1] * 16), speech_lengths) speech_i = speech[bed_idx:end_idx] speech_lengths_i = end_idx - bed_idx speech_list.append(speech_i) speech_lengths_list.append(speech_lengths_i) intervals.append([bed_idx // 16, end_idx // 16]) return speech_list, speech_lengths_list, intervals def merge_vad(vad_result, max_length=15000, min_length=0): new_result = [] if len(vad_result) <= 1: return vad_result time_step = [t[0] for t in vad_result] + [t[1] for t in vad_result] time_step = sorted(list(set(time_step))) if len(time_step) == 0: return [] bg = 0 for i in range(len(time_step) - 1): time = time_step[i] if time_step[i + 1] - bg < max_length: continue if time - bg > min_length: new_result.append([bg, time]) # if time - bg < max_length * 1.5: # new_result.append([bg, time]) # else: # split_num = int(time - bg) // max_length + 1 # spl_l = int(time - bg) // split_num # for j in range(split_num): # new_result.append([bg + j * spl_l, bg + (j + 1) * spl_l]) bg = time new_result.append([bg, time_step[-1]]) return new_result