import random from multiprocessing import Pool from pathlib import Path import click import librosa import torch.nn.functional as F import torchaudio from tqdm import tqdm from tools.file import AUDIO_EXTENSIONS, list_files threshold = 10 ** (-50 / 20.0) def process(file): waveform, sample_rate = torchaudio.load(str(file), backend="sox") if waveform.size(0) > 1: waveform = waveform.mean(dim=0, keepdim=True) loudness = librosa.feature.rms( y=waveform.numpy().squeeze(), frame_length=2048, hop_length=512, center=True )[0] for i in range(len(loudness) - 1, 0, -1): if loudness[i] > threshold: break end_silent_time = (len(loudness) - i) * 512 / sample_rate if end_silent_time <= 0.3: random_time = random.uniform(0.3, 0.7) - end_silent_time waveform = F.pad( waveform, (0, int(random_time * sample_rate)), mode="constant", value=0 ) for i in range(len(loudness)): if loudness[i] > threshold: break start_silent_time = i * 512 / sample_rate if start_silent_time > 0.02: waveform = waveform[:, int((start_silent_time - 0.02) * sample_rate) :] torchaudio.save(uri=str(file), src=waveform, sample_rate=sample_rate) @click.command() @click.argument("source", type=Path) @click.option("--num-workers", type=int, default=12) def main(source, num_workers): files = list(list_files(source, AUDIO_EXTENSIONS, recursive=True)) with Pool(num_workers) as p: list(tqdm(p.imap_unordered(process, files), total=len(files))) if __name__ == "__main__": main()