import random from dataclasses import dataclass from itertools import chain from pathlib import Path from random import Random from typing import Optional, Union import numpy as np import pyarrow.parquet as pq import torch import torch.nn.functional as F from datasets.download.streaming_download_manager import xopen from huggingface_hub import HfApi from lightning import LightningDataModule from torch.distributed import get_rank, get_world_size, is_initialized from torch.utils.data import DataLoader, IterableDataset, get_worker_info from transformers import AutoTokenizer from fish_speech.conversation import CODEBOOK_PAD_TOKEN_ID from fish_speech.datasets.protos.text_data_pb2 import SampledData from fish_speech.datasets.protos.text_data_stream import read_pb_stream from fish_speech.text.clean import clean_text from fish_speech.utils import RankedLogger from fish_speech.utils.braceexpand import braceexpand log = RankedLogger(__name__, rank_zero_only=True) def split_by_rank_worker(files): # We need to know the total number of devices # to split the data properly total_devices = 1 if is_initialized(): total_devices = get_world_size() worker_info = get_worker_info() if worker_info is not None: total_devices *= worker_info.num_workers if len(files) < total_devices: # Repeat the files N times to match the number of devices files = files * (total_devices // len(files) + 1) # DDP if is_initialized(): files = files[get_rank() :: get_world_size()] # Split by worker if worker_info is not None: files = files[worker_info.id :: worker_info.num_workers] return files class AutoTextSemanticInstructionDataset(IterableDataset): """ Auto Augment Dataset by Speaker 1. Random concatenate multiple sentences from the same speaker to form a longer sentence 2. Automatically normalize the text For interactive mode, we use the following format (multiple sequences): [INST] [SPK: speaker] text [/INST] ... [INST] text [/INST] For non-interactive mode, we use the following format (one long sequence): [INST] text [/INST] ... """ def __init__( self, proto_files: list[str], seed: int = 42, interactive_prob: float = 0.5, max_length: int = 1024, tokenizer: AutoTokenizer = None, use_speaker: bool | float = True, causal: bool = True, num_codebooks: Optional[int] = None, skip_text_prob: float = 0.0, ): """ Args: proto_files: proto buf files if using local data seed: random seed interactive_prob: probability to use interactive mode max_length: max length of the text tokenizer: tokenizer use_speaker: include speaker information in the prompt causal: use causal sampling when using local data, disable will lead to random sampling num_codebooks: number of codebooks, if None, it will be automatically detected skip_text_prob: probability to skip the text (audio only), this only applies to interactive mode """ super().__init__() assert 0 <= interactive_prob <= 1, "interactive_prob must be in [0, 1]" self.seed = seed self.max_length = max_length self.tokenizer = tokenizer self.interactive_prob = interactive_prob self.use_speaker = use_speaker self.proto_files = proto_files self.causal = causal self.num_codebooks = num_codebooks self.skip_text_prob = skip_text_prob self.semantic_token_id = self.tokenizer.convert_tokens_to_ids("<|semantic|>") self.groups = None def init_mock_data_server(self): if self.groups is not None: return # Expand the proto files expanded_proto_files = [] for filename in self.proto_files: for i in braceexpand(filename): i = Path(i) if i.is_file(): expanded_proto_files.append(i) elif i.is_dir(): expanded_proto_files.extend(i.rglob("*.proto")) expanded_proto_files.extend(i.rglob("*.protos")) else: raise ValueError(f"{i} is not a file or directory") expanded_proto_files = sorted(expanded_proto_files) Random(self.seed).shuffle(expanded_proto_files) self.groups = [] shard_proto_files = split_by_rank_worker(expanded_proto_files) log.info( f"Reading {len(shard_proto_files)} / {len(expanded_proto_files)} files" ) count = 0 for filename in shard_proto_files: with open(filename, "rb") as f: for text_data in read_pb_stream(f): self.groups.append(text_data) count += 1 log.info(f"Read total {count} groups of data") # Shuffle the lines Random(self.seed).shuffle(self.groups) self.group_weights = [len(i.sentences) for i in self.groups] def __iter__(self): while True: yield self.augment() def tokenize_sentence(self, sentence: str): sentence = clean_text(sentence) tokens = self.tokenizer.encode( f"{sentence}", max_length=10**6, add_special_tokens=False, truncation=False, ) return sentence, len(tokens) def sample_data(self): if self.groups is None: self.init_mock_data_server() # Shuffle unique lines, estimate that each sample is at least 20 tokens num_samples = self.max_length // 20 # choice group based on their number of samples group = random.choices(self.groups, weights=self.group_weights, k=1)[0] if self.causal: # Sample in order if num_samples >= len(group.sentences): samples = group.sentences else: begin = random.randint(0, len(group.sentences) - num_samples) samples = group.sentences[begin : begin + num_samples] else: samples = random.choices( group.sentences, k=min(num_samples, len(group.sentences)) ) return SampledData( source=group.source, name=group.name, samples=samples, ) def augment(self): final_text, final_semantic = [], [] response = self.sample_data() if len(response.samples) == 0: # Invalid group return None samples = list(response.samples) idx = 0 use_interactive = random.random() < self.interactive_prob if use_interactive is False: # Random sample based on speaker using a truncated normal distribution a = torch.tensor([0], dtype=torch.float32) torch.nn.init.trunc_normal_( a, mean=self.max_length // 2, std=self.max_length // 4, a=10, b=self.max_length, ) remaining_tokens = a.long().item() - 4 else: remaining_tokens = self.max_length # Use speaker if isinstance(self.use_speaker, float): use_speaker = random.random() < self.use_speaker else: use_speaker = self.use_speaker all_tokens, all_labels = [], [] while remaining_tokens > 0 and len(samples) > 0: sentence = samples.pop(0) text = random.choice(sentence.texts) text, length = self.tokenize_sentence(text) remaining_tokens -= length + len(sentence.semantics[0].values) if use_interactive is False: final_text.append(text) final_semantic.append(sentence.semantics) else: # For interactive mode, we only apply speaker for the first sentence # [INST] [SPK: speaker] text [/INST] ... [INST] text [/INST] tokens, labels = self.pack_sentences( sentences=[text], semantics=[sentence.semantics], speaker=response.name if use_speaker else None, skip_text=random.random() < self.skip_text_prob, ) all_tokens.append(tokens) all_labels.append(labels) idx += 1 if use_interactive is False: tokens, labels = self.pack_sentences( final_text, semantics=final_semantic, speaker=response.name if use_speaker else None, ) all_tokens.append(tokens) all_labels.append(labels) tokens = torch.cat(all_tokens, dim=1) labels = torch.cat(all_labels, dim=1) # Verify that the length is correct assert tokens.size(1) == labels.size(1), f"{tokens.size(1)} != {labels.size(1)}" data = {"tokens": tokens, "labels": labels} return data def pack_sentences( self, sentences: list[str], semantics: list, speaker: Optional[str] = None, skip_text: bool = False, ): if speaker is None: speaker = "assistant" cated_sentences = " ".join(sentences) if skip_text: cated_sentences = "<|skip_text|>" final_text = "<|im_start|>user\n" + cated_sentences + "<|im_end|>" final_text = final_text + f"<|im_start|>{speaker}\n" encoded = self.tokenizer.encode( final_text, add_special_tokens=False, truncation=False, max_length=10**6, ) semantic_length = sum([len(i[0].values) for i in semantics]) prompt_length = len(encoded) num_codebooks = ( len(semantics[0]) if self.num_codebooks is None else self.num_codebooks ) # Pack the tokens and semantics (add and to semantic tokens) tokens = ( encoded + [self.semantic_token_id] * semantic_length + self.tokenizer.convert_tokens_to_ids(["<|im_end|>"]) ) # Codebook bos/padding: 0, eos: 1 codes = [[CODEBOOK_PAD_TOKEN_ID] * prompt_length for _ in range(num_codebooks)] for segment in semantics: for book_idx, book in zip(range(num_codebooks), segment): for j in book.values: codes[book_idx].append(int(j) + 1) for book in codes: book.extend([CODEBOOK_PAD_TOKEN_ID] * 1) tokens = [tokens] + codes tokens = torch.tensor(tokens, dtype=torch.long) labels = tokens.clone() if skip_text: # If text is not provided, the sentence is used for condition only, all labels are -100 torch.fill_(labels, -100) return tokens, labels # Mask out the tokens for semantic, predict semantic tokens only # Since we don't mask out the input tokens, the language modeling still works labels[1:, :prompt_length] = -100 tokens = tokens[:, :-1] labels = labels[:, 1:] # Verify the padding is correct, and the last token is eos assert (tokens[1:, :prompt_length] == CODEBOOK_PAD_TOKEN_ID).all() assert (labels[1:, -1:] == CODEBOOK_PAD_TOKEN_ID).all() return tokens, labels @dataclass class TextDataCollator: tokenizer: AutoTokenizer max_length: int = 1024 def __call__(self, examples): if "negative_tokens" in examples: positive_examples = [] negative_examples = [] for i in examples: positive_examples.append( { "tokens": i["tokens"], "labels": i["labels"], } ) negative_examples.append( { "tokens": i["negative_tokens"], "labels": i["negative_labels"], } ) examples = positive_examples + negative_examples return self.batchify(examples) def batchify(self, examples, tokens_key="tokens", labels_key="labels"): tokens, attention_masks, labels = [], [], [] # Calculate the max length max_tokens_length = 0 for example in examples: max_tokens_length = max(max_tokens_length, example[tokens_key].size(1)) max_tokens_length = min(max_tokens_length, self.max_length) for example in examples: _tokens = example[tokens_key][:, :max_tokens_length] _labels = example[labels_key][:, :max_tokens_length] _attention_mask = torch.ones((max_tokens_length,), dtype=torch.bool) tokens_length = _tokens.size(1) _attention_mask[:tokens_length] = False assert tokens_length == _labels.size( 1 ), f"{tokens_length} != {_labels.size(1)}" if tokens_length < max_tokens_length: _tokens = F.pad( _tokens, (0, max_tokens_length - tokens_length), value=self.tokenizer.eos_token_id, ) _tokens[1:, tokens_length:] = CODEBOOK_PAD_TOKEN_ID _labels = F.pad( _labels, (0, max_tokens_length - _labels.size(1)), value=-100 ) tokens.append(_tokens) attention_masks.append(_attention_mask) labels.append(_labels) tokens = torch.stack(tokens, dim=0) attention_masks = torch.stack(attention_masks, dim=0) labels = torch.stack(labels, dim=0) return { "inputs": tokens, "attention_masks": attention_masks, "labels": labels, } class InterleaveDataset(IterableDataset): def __init__( self, datasets: list[IterableDataset], probabilities: list[float], seed: int = 42, ): super().__init__() self.datasets = datasets self.probabilities = probabilities self.seed = seed def __iter__(self): rng = np.random.default_rng(self.seed) dataset_iterators = [iter(dataset) for dataset in self.datasets] while True: # Random choice one dataset_idx = rng.choice(len(self.datasets), p=self.probabilities) dataset_iterator = dataset_iterators[dataset_idx] try: yield next(dataset_iterator) except StopIteration: # Exhausted, create a new iterator dataset_iterators[dataset_idx] = iter(self.datasets[dataset_idx]) yield next(dataset_iterators[dataset_idx]) class SemanticDataModule(LightningDataModule): def __init__( self, train_dataset: Union[AutoTextSemanticInstructionDataset, InterleaveDataset], val_dataset: Union[AutoTextSemanticInstructionDataset, InterleaveDataset], batch_size: int = 32, tokenizer: AutoTokenizer = None, max_length: int = 1024, num_workers: int = 4, ): super().__init__() self.train_dataset = train_dataset self.val_dataset = val_dataset self.batch_size = batch_size self.tokenizer = tokenizer self.max_length = max_length self.num_workers = num_workers def train_dataloader(self): return DataLoader( self.train_dataset, batch_size=self.batch_size, collate_fn=TextDataCollator(self.tokenizer, self.max_length), num_workers=self.num_workers, persistent_workers=True, ) def val_dataloader(self): return DataLoader( self.val_dataset, batch_size=self.batch_size, collate_fn=TextDataCollator(self.tokenizer, self.max_length), num_workers=self.num_workers, persistent_workers=True, ) if __name__ == "__main__": from tqdm import tqdm ds = AutoTextSemanticInstructionDataset( ["data/protos"], tokenizer=AutoTokenizer.from_pretrained("fishaudio/fish-speech-1"), use_speaker=False, interactive_prob=1.0, skip_text_prob=0.5, ) for i in ds: print(ds.tokenizer.decode(i["tokens"][0], skip_special_tokens=False)) # i["labels"][0][i["labels"][0] == -100] = 0 # print(ds.tokenizer.decode(i["labels"][0], skip_special_tokens=False)) break