#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import copy import json import logging import os.path import random import re import string import time import numpy as np import torch from funasr.download.download_model_from_hub import download_model from funasr.download.file import download_from_url from funasr.register import tables from funasr.train_utils.load_pretrained_model import load_pretrained_model from funasr.train_utils.set_all_random_seed import set_all_random_seed from funasr.utils import export_utils, misc from funasr.utils.load_utils import load_audio_text_image_video, load_bytes from funasr.utils.misc import deep_update from funasr.utils.timestamp_tools import timestamp_sentence, timestamp_sentence_en from tqdm import tqdm from .vad_utils import merge_vad, slice_padding_audio_samples try: from funasr.models.campplus.cluster_backend import ClusterBackend from funasr.models.campplus.utils import distribute_spk, postprocess, sv_chunk except: pass def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None): """ """ data_list = [] key_list = [] filelist = [".scp", ".txt", ".json", ".jsonl", ".text"] chars = string.ascii_letters + string.digits if isinstance(data_in, str): if data_in.startswith("http://") or data_in.startswith("https://"): # url data_in = download_from_url(data_in) if isinstance(data_in, str) and os.path.exists( data_in ): # wav_path; filelist: wav.scp, file.jsonl;text.txt; _, file_extension = os.path.splitext(data_in) file_extension = file_extension.lower() if file_extension in filelist: # filelist: wav.scp, file.jsonl;text.txt; with open(data_in, encoding="utf-8") as fin: for line in fin: key = "rand_key_" + "".join(random.choice(chars) for _ in range(13)) if data_in.endswith( ".jsonl" ): # file.jsonl: json.dumps({"source": data}) lines = json.loads(line.strip()) data = lines["source"] key = data["key"] if "key" in data else key else: # filelist, wav.scp, text.txt: id \t data or data lines = line.strip().split(maxsplit=1) data = lines[1] if len(lines) > 1 else lines[0] key = lines[0] if len(lines) > 1 else key data_list.append(data) key_list.append(key) else: if key is None: # key = "rand_key_" + "".join(random.choice(chars) for _ in range(13)) key = misc.extract_filename_without_extension(data_in) data_list = [data_in] key_list = [key] elif isinstance(data_in, (list, tuple)): if data_type is not None and isinstance( data_type, (list, tuple) ): # mutiple inputs data_list_tmp = [] for data_in_i, data_type_i in zip(data_in, data_type): key_list, data_list_i = prepare_data_iterator( data_in=data_in_i, data_type=data_type_i ) data_list_tmp.append(data_list_i) data_list = [] for item in zip(*data_list_tmp): data_list.append(item) else: # [audio sample point, fbank, text] data_list = data_in key_list = [] for data_i in data_in: if isinstance(data_i, str) and os.path.exists(data_i): key = misc.extract_filename_without_extension(data_i) else: if key is None: key = "rand_key_" + "".join( random.choice(chars) for _ in range(13) ) key_list.append(key) else: # raw text; audio sample point, fbank; bytes if isinstance(data_in, bytes): # audio bytes data_in = load_bytes(data_in) if key is None: key = "rand_key_" + "".join(random.choice(chars) for _ in range(13)) data_list = [data_in] key_list = [key] return key_list, data_list class AutoModel: def __init__(self, **kwargs): try: from funasr.utils.version_checker import check_for_update print( "Check update of funasr, and it would cost few times. You may disable it by set `disable_update=True` in AutoModel" ) check_for_update(disable=kwargs.get("disable_update", False)) except: pass log_level = getattr(logging, kwargs.get("log_level", "INFO").upper()) logging.basicConfig(level=log_level) model, kwargs = self.build_model(**kwargs) # if vad_model is not None, build vad model else None vad_model = kwargs.get("vad_model", None) vad_kwargs = ( {} if kwargs.get("vad_kwargs", {}) is None else kwargs.get("vad_kwargs", {}) ) if vad_model is not None: logging.info("Building VAD model.") vad_kwargs["model"] = vad_model vad_kwargs["model_revision"] = kwargs.get("vad_model_revision", "master") vad_kwargs["device"] = kwargs["device"] vad_model, vad_kwargs = self.build_model(**vad_kwargs) # if punc_model is not None, build punc model else None punc_model = kwargs.get("punc_model", None) punc_kwargs = ( {} if kwargs.get("punc_kwargs", {}) is None else kwargs.get("punc_kwargs", {}) ) if punc_model is not None: logging.info("Building punc model.") punc_kwargs["model"] = punc_model punc_kwargs["model_revision"] = kwargs.get("punc_model_revision", "master") punc_kwargs["device"] = kwargs["device"] punc_model, punc_kwargs = self.build_model(**punc_kwargs) # if spk_model is not None, build spk model else None spk_model = kwargs.get("spk_model", None) spk_kwargs = ( {} if kwargs.get("spk_kwargs", {}) is None else kwargs.get("spk_kwargs", {}) ) if spk_model is not None: logging.info("Building SPK model.") spk_kwargs["model"] = spk_model spk_kwargs["model_revision"] = kwargs.get("spk_model_revision", "master") spk_kwargs["device"] = kwargs["device"] spk_model, spk_kwargs = self.build_model(**spk_kwargs) self.cb_model = ClusterBackend().to(kwargs["device"]) spk_mode = kwargs.get("spk_mode", "punc_segment") if spk_mode not in ["default", "vad_segment", "punc_segment"]: logging.error( "spk_mode should be one of default, vad_segment and punc_segment." ) self.spk_mode = spk_mode self.kwargs = kwargs self.model = model self.vad_model = vad_model self.vad_kwargs = vad_kwargs self.punc_model = punc_model self.punc_kwargs = punc_kwargs self.spk_model = spk_model self.spk_kwargs = spk_kwargs self.model_path = kwargs.get("model_path") @staticmethod def build_model(**kwargs): assert "model" in kwargs if "model_conf" not in kwargs: logging.info( "download models from model hub: {}".format(kwargs.get("hub", "ms")) ) kwargs = download_model(**kwargs) set_all_random_seed(kwargs.get("seed", 0)) device = kwargs.get("device", "cuda") if not torch.cuda.is_available() or kwargs.get("ngpu", 1) == 0: device = "cpu" kwargs["batch_size"] = 1 kwargs["device"] = device torch.set_num_threads(kwargs.get("ncpu", 4)) # build tokenizer tokenizer = kwargs.get("tokenizer", None) if tokenizer is not None: tokenizer_class = tables.tokenizer_classes.get(tokenizer) tokenizer = tokenizer_class(**kwargs.get("tokenizer_conf", {})) kwargs["token_list"] = ( tokenizer.token_list if hasattr(tokenizer, "token_list") else None ) kwargs["token_list"] = ( tokenizer.get_vocab() if hasattr(tokenizer, "get_vocab") else kwargs["token_list"] ) vocab_size = ( len(kwargs["token_list"]) if kwargs["token_list"] is not None else -1 ) if vocab_size == -1 and hasattr(tokenizer, "get_vocab_size"): vocab_size = tokenizer.get_vocab_size() else: vocab_size = -1 kwargs["tokenizer"] = tokenizer # build frontend frontend = kwargs.get("frontend", None) kwargs["input_size"] = None if frontend is not None: frontend_class = tables.frontend_classes.get(frontend) frontend = frontend_class(**kwargs.get("frontend_conf", {})) kwargs["input_size"] = ( frontend.output_size() if hasattr(frontend, "output_size") else None ) kwargs["frontend"] = frontend # build model model_class = tables.model_classes.get(kwargs["model"]) assert model_class is not None, f'{kwargs["model"]} is not registered' model_conf = {} deep_update(model_conf, kwargs.get("model_conf", {})) deep_update(model_conf, kwargs) model = model_class(**model_conf, vocab_size=vocab_size) # init_param init_param = kwargs.get("init_param", None) if init_param is not None: if os.path.exists(init_param): logging.info(f"Loading pretrained params from {init_param}") load_pretrained_model( model=model, path=init_param, ignore_init_mismatch=kwargs.get("ignore_init_mismatch", True), oss_bucket=kwargs.get("oss_bucket", None), scope_map=kwargs.get("scope_map", []), excludes=kwargs.get("excludes", None), ) else: print(f"error, init_param does not exist!: {init_param}") # fp16 if kwargs.get("fp16", False): model.to(torch.float16) elif kwargs.get("bf16", False): model.to(torch.bfloat16) model.to(device) if not kwargs.get("disable_log", True): tables.print() return model, kwargs def __call__(self, *args, **cfg): kwargs = self.kwargs deep_update(kwargs, cfg) res = self.model(*args, kwargs) return res def generate(self, input, input_len=None, **cfg): if self.vad_model is None: return self.inference(input, input_len=input_len, **cfg) else: return self.inference_with_vad(input, input_len=input_len, **cfg) def inference( self, input, input_len=None, model=None, kwargs=None, key=None, **cfg ): kwargs = self.kwargs if kwargs is None else kwargs if "cache" in kwargs: kwargs.pop("cache") deep_update(kwargs, cfg) model = self.model if model is None else model model.eval() batch_size = kwargs.get("batch_size", 1) # if kwargs.get("device", "cpu") == "cpu": # batch_size = 1 key_list, data_list = prepare_data_iterator( input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key ) speed_stats = {} asr_result_list = [] num_samples = len(data_list) disable_pbar = self.kwargs.get("disable_pbar", False) pbar = ( tqdm(colour="blue", total=num_samples, dynamic_ncols=True) if not disable_pbar else None ) time_speech_total = 0.0 time_escape_total = 0.0 for beg_idx in range(0, num_samples, batch_size): end_idx = min(num_samples, beg_idx + batch_size) data_batch = data_list[beg_idx:end_idx] key_batch = key_list[beg_idx:end_idx] batch = {"data_in": data_batch, "key": key_batch} if (end_idx - beg_idx) == 1 and kwargs.get( "data_type", None ) == "fbank": # fbank batch["data_in"] = data_batch[0] batch["data_lengths"] = input_len time1 = time.perf_counter() with torch.no_grad(): res = model.inference(**batch, **kwargs) if isinstance(res, (list, tuple)): results = res[0] if len(res) > 0 else [{"text": ""}] meta_data = res[1] if len(res) > 1 else {} time2 = time.perf_counter() asr_result_list.extend(results) # batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item() batch_data_time = meta_data.get("batch_data_time", -1) time_escape = time2 - time1 speed_stats["load_data"] = meta_data.get("load_data", 0.0) speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0) speed_stats["forward"] = f"{time_escape:0.3f}" speed_stats["batch_size"] = f"{len(results)}" speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}" description = f"{speed_stats}, " if pbar: pbar.update(end_idx - beg_idx) pbar.set_description(description) time_speech_total += batch_data_time time_escape_total += time_escape if pbar: # pbar.update(1) pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}") torch.cuda.empty_cache() return asr_result_list def vad(self, input, input_len=None, **cfg): kwargs = self.kwargs # step.1: compute the vad model deep_update(self.vad_kwargs, cfg) beg_vad = time.time() res = self.inference( input, input_len=input_len, model=self.vad_model, kwargs=self.vad_kwargs, **cfg, ) end_vad = time.time() # FIX(gcf): concat the vad clips for sense vocie model for better aed if cfg.get("merge_vad", False): for i in range(len(res)): res[i]["value"] = merge_vad( res[i]["value"], kwargs.get("merge_length_s", 15) * 1000 ) elapsed = end_vad - beg_vad return elapsed, res def inference_with_vadres(self, input, vad_res, input_len=None, **cfg): kwargs = self.kwargs # step.2 compute asr model model = self.model deep_update(kwargs, cfg) batch_size = max(int(kwargs.get("batch_size_s", 300)) * 1000, 1) batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60)) * 1000 kwargs["batch_size"] = batch_size key_list, data_list = prepare_data_iterator( input, input_len=input_len, data_type=kwargs.get("data_type", None) ) results_ret_list = [] time_speech_total_all_samples = 1e-6 beg_total = time.time() pbar_total = ( tqdm(colour="red", total=len(vad_res), dynamic_ncols=True) if not kwargs.get("disable_pbar", False) else None ) for i in range(len(vad_res)): key = vad_res[i]["key"] vadsegments = vad_res[i]["value"] input_i = data_list[i] fs = kwargs["frontend"].fs if hasattr(kwargs["frontend"], "fs") else 16000 speech = load_audio_text_image_video( input_i, fs=fs, audio_fs=kwargs.get("fs", 16000) ) speech_lengths = len(speech) n = len(vadsegments) data_with_index = [(vadsegments[i], i) for i in range(n)] sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0]) results_sorted = [] if not len(sorted_data): results_ret_list.append({"key": key, "text": "", "timestamp": []}) logging.info("decoding, utt: {}, empty speech".format(key)) continue if len(sorted_data) > 0 and len(sorted_data[0]) > 0: batch_size = max( batch_size, sorted_data[0][0][1] - sorted_data[0][0][0] ) if kwargs["device"] == "cpu": batch_size = 0 beg_idx = 0 beg_asr_total = time.time() time_speech_total_per_sample = speech_lengths / 16000 time_speech_total_all_samples += time_speech_total_per_sample # pbar_sample = tqdm(colour="blue", total=n, dynamic_ncols=True) all_segments = [] max_len_in_batch = 0 end_idx = 1 for j, _ in enumerate(range(0, n)): # pbar_sample.update(1) sample_length = sorted_data[j][0][1] - sorted_data[j][0][0] potential_batch_length = max(max_len_in_batch, sample_length) * ( j + 1 - beg_idx ) # batch_size_ms_cum += sorted_data[j][0][1] - sorted_data[j][0][0] if ( j < n - 1 and sample_length < batch_size_threshold_ms and potential_batch_length < batch_size ): max_len_in_batch = max(max_len_in_batch, sample_length) end_idx += 1 continue speech_j, speech_lengths_j, intervals = slice_padding_audio_samples( speech, speech_lengths, sorted_data[beg_idx:end_idx] ) results = self.inference( speech_j, input_len=None, model=model, kwargs=kwargs, **cfg ) for _b in range(len(speech_j)): results[_b]["interval"] = intervals[_b] if self.spk_model is not None: # compose vad segments: [[start_time_sec, end_time_sec, speech], [...]] for _b in range(len(speech_j)): vad_segments = [ [ sorted_data[beg_idx:end_idx][_b][0][0] / 1000.0, sorted_data[beg_idx:end_idx][_b][0][1] / 1000.0, np.array(speech_j[_b]), ] ] segments = sv_chunk(vad_segments) all_segments.extend(segments) speech_b = [i[2] for i in segments] spk_res = self.inference( speech_b, input_len=None, model=self.spk_model, kwargs=kwargs, **cfg, ) results[_b]["spk_embedding"] = spk_res[0]["spk_embedding"] beg_idx = end_idx end_idx += 1 max_len_in_batch = sample_length if len(results) < 1: continue results_sorted.extend(results) # end_asr_total = time.time() # time_escape_total_per_sample = end_asr_total - beg_asr_total # pbar_sample.update(1) # pbar_sample.set_description(f"rtf_avg_per_sample: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, " # f"time_speech_total_per_sample: {time_speech_total_per_sample: 0.3f}, " # f"time_escape_total_per_sample: {time_escape_total_per_sample:0.3f}") restored_data = [0] * n for j in range(n): index = sorted_data[j][1] cur = results_sorted[j] pattern = r"<\|([^|]+)\|>" emotion_string = re.findall(pattern, cur["text"]) cur["text"] = re.sub(pattern, "", cur["text"]) cur["emo"] = "".join([f"<|{t}|>" for t in emotion_string]) if self.punc_model is not None and len(cur["text"].strip()) > 0: deep_update(self.punc_kwargs, cfg) punc_res = self.inference( cur["text"], model=self.punc_model, kwargs=self.punc_kwargs, **cfg, ) cur["text"] = punc_res[0]["text"] restored_data[index] = cur end_asr_total = time.time() time_escape_total_per_sample = end_asr_total - beg_asr_total if pbar_total: pbar_total.update(1) pbar_total.set_description( f"rtf_avg: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, " f"time_speech: {time_speech_total_per_sample: 0.3f}, " f"time_escape: {time_escape_total_per_sample:0.3f}" ) # end_total = time.time() # time_escape_total_all_samples = end_total - beg_total # print(f"rtf_avg_all: {time_escape_total_all_samples / time_speech_total_all_samples:0.3f}, " # f"time_speech_all: {time_speech_total_all_samples: 0.3f}, " # f"time_escape_all: {time_escape_total_all_samples:0.3f}") return restored_data def export(self, input=None, **cfg): """ :param input: :param type: :param quantize: :param fallback_num: :param calib_num: :param opset_version: :param cfg: :return: """ device = cfg.get("device", "cpu") model = self.model.to(device=device) kwargs = self.kwargs deep_update(kwargs, cfg) kwargs["device"] = device del kwargs["model"] model.eval() type = kwargs.get("type", "onnx") key_list, data_list = prepare_data_iterator( input, input_len=None, data_type=kwargs.get("data_type", None), key=None ) with torch.no_grad(): export_dir = export_utils.export(model=model, data_in=data_list, **kwargs) return export_dir