from typing import Any, Optional import lightning as L import torch import torch.nn.functional as F from lightning.pytorch.utilities.types import OptimizerLRScheduler import fish_speech.utils as utils from fish_speech.conversation import CODEBOOK_PAD_TOKEN_ID from fish_speech.models.text2semantic.llama import NaiveTransformer log = utils.RankedLogger(__name__, rank_zero_only=True) class TextToSemantic(L.LightningModule): def __init__( self, model: NaiveTransformer, optimizer: Any, lr_scheduler: Any, ): super().__init__() self.model = model self.optimizer_builder = optimizer self.lr_scheduler_builder = lr_scheduler def forward(self, x): return self.model(x) def on_save_checkpoint(self, checkpoint): # Save only LoRA parameters state_dict = checkpoint["state_dict"] use_lora = any("lora" in name for name in state_dict.keys()) if not use_lora: return for name in list(state_dict.keys()): if "lora" not in name: state_dict.pop(name) def configure_optimizers(self) -> OptimizerLRScheduler: # Get weight decay parameters weight_decay_parameters, other_parameters = [], [] for name, param in self.named_parameters(): if ".bias" in name or "norm.weight" in name or ".embeddings." in name: other_parameters.append(param) else: weight_decay_parameters.append(param) optimizer = self.optimizer_builder( [ {"params": weight_decay_parameters}, {"params": other_parameters, "weight_decay": 0.0}, ] ) # Print the parameters and their weight decay for i in optimizer.param_groups: log.info( f"Set weight decay: {i['weight_decay']} for {len(i['params'])} parameters" ) lr_scheduler = self.lr_scheduler_builder(optimizer) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": lr_scheduler, "interval": "step", }, } # Copied from https://github.com/eric-mitchell/direct-preference-optimization/blob/main/trainers.py#L90 def get_batch_logps( self, logits: torch.FloatTensor, labels: torch.LongTensor, average_log_prob: bool = False, ) -> torch.FloatTensor: """Compute the log probabilities of the given labels under the given logits. Args: logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, codebook_size, vocab_size) labels: Labels for which to compute the log probabilities. Label tokens with a value of -100 are ignored. Shape: (batch_size, sequence_length, codebook_size) average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens. Returns: A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits. """ assert logits.shape[:-1] == labels.shape labels = labels.clone() loss_mask = labels != -100 # dummy token; we'll ignore the losses on these tokens later labels[labels == -100] = 0 per_token_logps = torch.gather( logits.log_softmax(-1), dim=-1, index=labels.unsqueeze(-1) ).squeeze(-1) if average_log_prob: return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1) else: return (per_token_logps * loss_mask).sum(-1) def _step(self, batch, batch_idx, stage: str): is_train = stage == "train" if is_train: # Key part to make lora work # Otherwise the parameters are merged, which lead to incorrect gradients self.model.train() # Do positive and negative samples in the same batch to speed up training labels = batch["labels"] outputs = self.model( inp=batch["inputs"], key_padding_mask=batch["attention_masks"], ) token_logits = outputs.token_logits codebook_logits = outputs.codebook_logits # Generate labels base_loss = F.cross_entropy( token_logits.view(-1, token_logits.size(-1)), labels[:, 0].reshape(-1), ignore_index=-100, ) codebook_labels = labels[:, 1 : 1 + self.model.config.num_codebooks].mT semantic_loss = F.cross_entropy( codebook_logits.view(-1, codebook_logits.size(-1)), codebook_labels.reshape(-1), ignore_index=-100, ) loss = base_loss + semantic_loss self.log( f"{stage}/loss", loss, on_step=is_train, on_epoch=not is_train, prog_bar=True, logger=True, sync_dist=not is_train, ) self.log( f"{stage}/base_loss", base_loss, on_step=is_train, on_epoch=not is_train, prog_bar=False, logger=True, sync_dist=not is_train, ) self.log( f"{stage}/semantic_loss", semantic_loss, on_step=is_train, on_epoch=not is_train, prog_bar=False, logger=True, sync_dist=not is_train, ) # Top-5 accuracy accuracy = self.get_accuracy(codebook_logits, codebook_labels) self.log( f"{stage}/top_5_accuracy", accuracy, on_step=is_train, on_epoch=not is_train, prog_bar=True, logger=True, sync_dist=not is_train, ) return loss def get_accuracy(self, logits, labels): mask = (labels != -100) & (labels != CODEBOOK_PAD_TOKEN_ID) if mask.sum() == 0: return torch.tensor(0.0, device=logits.device) _, indices = logits.topk(5, dim=-1) correct = indices.eq(labels.unsqueeze(-1)) correct[~mask] = 0 correct = correct.sum() accuracy = correct / mask.sum() return accuracy def training_step(self, batch, batch_idx): return self._step(batch, batch_idx, "train") def validation_step(self, batch, batch_idx): return self._step(batch, batch_idx, "val")