PoTaTo721's picture
Upload Fish-Agent Demo
4f6613a
raw
history blame
28 kB
import dataclasses
import json
import math
from collections import OrderedDict
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
import torch
import torch.nn as nn
from einops import rearrange
from loguru import logger
from torch import Tensor
from torch.nn import functional as F
from torch.nn.attention import SDPBackend, sdpa_kernel
from torch.utils.checkpoint import checkpoint
from transformers import AutoTokenizer
from fish_speech.conversation import SEMANTIC_TOKEN
from fish_speech.utils import RankedLogger
from .lora import LoraConfig, setup_lora
log = RankedLogger(__name__, rank_zero_only=True)
def find_multiple(n: int, k: int) -> int:
if n % k == 0:
return n
return n + k - (n % k)
@dataclass
class BaseModelArgs:
model_type: str = "base"
vocab_size: int = 32000
n_layer: int = 32
n_head: int = 32
dim: int = 4096
intermediate_size: int = None
n_local_heads: int = -1
head_dim: int = 64
rope_base: float = 10000
norm_eps: float = 1e-5
max_seq_len: int = 2048
dropout: float = 0.0
tie_word_embeddings: bool = True
attention_qkv_bias: bool = False
# Codebook configs
codebook_size: int = 160
num_codebooks: int = 4
# Gradient checkpointing
use_gradient_checkpointing: bool = True
# Initialize the model
initializer_range: float = 0.02
# Dummy vars
is_reward_model: bool = False
share_codebook_embeddings: bool = True
def __post_init__(self):
if self.n_local_heads == -1:
self.n_local_heads = self.n_head
if self.intermediate_size is None:
hidden_dim = 4 * self.dim
n_hidden = int(2 * hidden_dim / 3)
self.intermediate_size = find_multiple(n_hidden, 256)
self.head_dim = self.dim // self.n_head
@staticmethod
def from_pretrained(path: str):
path = Path(path)
if path.is_dir():
path = path / "config.json"
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
match data["model_type"]:
case "naive":
cls = NaiveModelArgs
case "dual_ar":
cls = DualARModelArgs
case _:
raise ValueError(f"Unknown model type: {data['model_type']}")
return cls(**data)
def save(self, path: str):
with open(path, "w") as f:
json.dump(self.__dict__, f, indent=4, sort_keys=True, ensure_ascii=False)
@dataclass
class NaiveModelArgs(BaseModelArgs):
model_type: str = "naive"
@dataclass
class DualARModelArgs(BaseModelArgs):
model_type: str = "dual_ar"
n_fast_layer: int = 4
fast_dim: int | None = None
fast_n_head: int | None = None
fast_n_local_heads: int | None = None
fast_head_dim: int | None = None
fast_intermediate_size: int | None = None
fast_attention_qkv_bias: bool | None = None
def __post_init__(self):
super().__post_init__()
self.fast_dim = self.fast_dim or self.dim
self.fast_n_head = self.fast_n_head or self.n_head
self.fast_n_local_heads = self.fast_n_local_heads or self.n_local_heads
self.fast_head_dim = self.fast_head_dim or self.head_dim
self.fast_intermediate_size = (
self.fast_intermediate_size or self.intermediate_size
)
self.fast_attention_qkv_bias = (
self.fast_attention_qkv_bias
if self.fast_attention_qkv_bias is not None
else self.attention_qkv_bias
)
class KVCache(nn.Module):
def __init__(
self, max_batch_size, max_seq_len, n_heads, head_dim, dtype=torch.bfloat16
):
super().__init__()
cache_shape = (max_batch_size, n_heads, max_seq_len, head_dim)
self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype))
self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype))
def update(self, input_pos, k_val, v_val):
# input_pos: [S], k_val: [B, H, S, D]
assert input_pos.shape[0] == k_val.shape[2]
k_out = self.k_cache
v_out = self.v_cache
k_out[:, :, input_pos] = k_val
v_out[:, :, input_pos] = v_val
return k_out, v_out
@dataclass
class TransformerForwardResult:
token_logits: Tensor
codebook_logits: Tensor
@dataclass
class BaseTransformerForwardResult:
logits: Tensor
hidden_states: Tensor
class BaseTransformer(nn.Module):
def __init__(
self, config: BaseModelArgs, tokenizer: AutoTokenizer, init_weights: bool = True
) -> None:
super().__init__()
self.config = config
self.tokenizer = tokenizer
self.semantic_token_id = tokenizer.convert_tokens_to_ids(SEMANTIC_TOKEN)
# Slow transformer
self.embeddings = nn.Embedding(
config.vocab_size,
config.dim,
)
self.codebook_embeddings = nn.Embedding(
config.codebook_size * config.num_codebooks,
config.dim,
)
self.layers = nn.ModuleList(
TransformerBlock(config, use_sdpa=True) for _ in range(config.n_layer)
)
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
if self.config.tie_word_embeddings is False:
self.output = nn.Linear(
config.dim,
config.vocab_size,
bias=False,
)
self.register_buffer(
"freqs_cis",
precompute_freqs_cis(
config.max_seq_len,
config.dim // config.n_head,
config.rope_base,
),
persistent=False,
)
self.register_buffer(
"causal_mask",
torch.tril(
torch.ones(
config.max_seq_len,
config.max_seq_len,
dtype=torch.bool,
)
),
persistent=False,
)
# For kv cache
self.max_batch_size = -1
self.max_seq_len = -1
if init_weights:
self.apply(self._init_weights)
def setup_caches(
self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16
):
if self.max_seq_len >= max_seq_len and self.max_batch_size >= max_batch_size:
return
head_dim = self.config.dim // self.config.n_head
max_seq_len = find_multiple(max_seq_len, 8)
self.max_seq_len = max_seq_len
self.max_batch_size = max_batch_size
for b in self.layers:
b.attention.kv_cache = KVCache(
max_batch_size,
max_seq_len,
self.config.n_local_heads,
head_dim,
dtype=dtype,
)
def embed(self, x: Tensor) -> Tensor:
vocab_embeds = [self.embeddings(x[:, 0])]
for i in range(self.config.num_codebooks):
emb = self.codebook_embeddings(x[:, i + 1] + i * self.config.codebook_size)
emb[x[:, 0] != self.semantic_token_id] = 0
vocab_embeds.append(emb)
x = torch.stack(vocab_embeds, dim=3)
x = x.sum(dim=3)
return x
def forward(
self,
inp: Tensor,
key_padding_mask: Optional[Tensor] = None,
) -> BaseTransformerForwardResult:
seq_len = inp.size(2)
# Here we want to merge the embeddings of the codebooks
x = self.embed(inp)
freqs_cis = self.freqs_cis[:seq_len]
# Not that the causal mask here follows the definition of scaled_dot_product_attention
# That is, FALSE means masked out
# To maintain consistency, key_padding_mask use TRUE to mask out
mask = None
if key_padding_mask is not None:
mask = self.causal_mask[None, None, :seq_len, :seq_len] # (B, N, Q, K)
mask = mask & key_padding_mask[:, None, None, :].logical_not()
for layer in self.layers:
if self.config.use_gradient_checkpointing and self.training:
x = checkpoint(layer, x, freqs_cis, mask, use_reentrant=True)
else:
x = layer(x, freqs_cis, mask)
# We got slow_out here
slow_out = self.norm(x)
if self.config.tie_word_embeddings:
token_logits = F.linear(slow_out, self.embeddings.weight)
else:
token_logits = self.output(slow_out)
return BaseTransformerForwardResult(
logits=token_logits,
hidden_states=x,
)
def forward_generate(
self,
x: Tensor,
input_pos: Optional[Tensor] = None,
return_all: bool = False,
) -> BaseTransformerForwardResult:
# This is used for generation, optimized for torch compile
assert (
self.max_seq_len != -1 and self.max_batch_size != -1
), "Please call setup_caches before forward_generate"
x = self.embed(x)
mask = self.causal_mask[
None, None, input_pos, : self.max_seq_len
] # (B, N, Q, K)
freqs_cis = self.freqs_cis[input_pos]
for layer in self.layers:
x = layer(x, freqs_cis, mask, input_pos=input_pos)
# If prefill, we only calculate the logits of last token
if x.size(1) > 1 and not return_all:
x = x[:, -1:]
# We got slow_out here
slow_out = self.norm(x)
if self.config.tie_word_embeddings:
token_logits = F.linear(slow_out, self.embeddings.weight)
else:
token_logits = self.output(slow_out)
return BaseTransformerForwardResult(
logits=token_logits,
hidden_states=x,
)
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@staticmethod
def from_pretrained(
path: str,
load_weights: bool = False,
max_length: int | None = None,
lora_config: LoraConfig | None = None,
rope_base: int | None = None,
) -> "BaseTransformer":
config = BaseModelArgs.from_pretrained(str(path))
if max_length is not None:
config.max_seq_len = max_length
log.info(f"Override max_seq_len to {max_length}")
if rope_base is not None:
config.rope_base = rope_base
log.info(f"Override rope_base to {rope_base}")
match config.model_type:
case "naive":
model_cls = NaiveTransformer
case "dual_ar":
model_cls = DualARTransformer
case _:
raise ValueError(f"Unknown model type: {config.model_type}")
tokenizer = AutoTokenizer.from_pretrained(str(path))
log.info(f"Loading model from {path}, config: {config}")
model = model_cls(config, tokenizer=tokenizer)
if lora_config is not None:
setup_lora(model, lora_config)
log.info(f"LoRA setup: {lora_config}")
if load_weights is False:
log.info("Randomly initialized model")
else:
if "int8" in str(Path(path)):
logger.info("Using int8 weight-only quantization!")
from tools.llama.quantize import WeightOnlyInt8QuantHandler
simple_quantizer = WeightOnlyInt8QuantHandler(model)
model = simple_quantizer.convert_for_runtime()
if "int4" in str(Path(path)):
logger.info("Using int4 quantization!")
path_comps = path.name.split("-")
assert path_comps[-2].startswith("g")
groupsize = int(path_comps[-2][1:])
from tools.llama.quantize import WeightOnlyInt4QuantHandler
simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize)
model = simple_quantizer.convert_for_runtime()
weights = torch.load(
Path(path) / "model.pth",
map_location="cpu",
mmap=True,
weights_only=True,
)
if "state_dict" in weights:
logger.warning(
"Using a TextToSemantic LightningModule checkpoint, "
"please make sure it is a full model, not a LoRA model."
)
weights = weights["state_dict"]
if next(iter(weights.keys())).startswith("model."):
logger.info(
f"Remove prefix 'model.' created by TextToSemantic LightningModule from keys"
)
new_weights = OrderedDict()
for k, v in weights.items():
new_weights[k.replace("model.", "")] = v
weights = new_weights
# Verify the name and shape of parameters since strict=False in load_state_dict.
for k, v in model.named_parameters():
if k not in weights:
logger.warning(f"No weight for {k}")
elif v.shape != weights[k].shape:
logger.warning(
f"Shape mismatch for {k}: {v.shape} vs {weights[k].shape}"
)
err = model.load_state_dict(weights, strict=False, assign=True)
log.info(f"Loaded weights with error: {err}")
return model
def save_pretrained(self, path: str, drop_lora: bool = False):
path = Path(path)
path.mkdir(parents=True, exist_ok=True)
self.config.save(path / "config.json")
state_dict = self.state_dict()
if drop_lora:
for key in list(state_dict.keys()):
if "lora" not in key:
continue
state_dict.pop(key)
log.info(f"Drop LoRA parameter: {key}")
torch.save(state_dict, path / "model.pth")
self.tokenizer.save_pretrained(path)
class NaiveTransformer(BaseTransformer):
def __init__(self, config: NaiveModelArgs, tokenizer: AutoTokenizer) -> None:
super().__init__(config, init_weights=False, tokenizer=tokenizer)
self.codebook_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.codebook_output = nn.Linear(
config.dim,
config.codebook_size * config.num_codebooks,
bias=False,
)
self.apply(self._init_weights)
def decode(self, result: BaseTransformerForwardResult) -> TransformerForwardResult:
token_logits = result.logits
x = result.hidden_states
# Codebook
codebook_logits = self.codebook_output(self.codebook_norm(x))
codebook_logits = rearrange(
codebook_logits, "b n (c d) -> b n c d", c=self.config.num_codebooks
)
return TransformerForwardResult(
token_logits=token_logits,
codebook_logits=codebook_logits,
)
def forward(
self,
inp: Tensor,
key_padding_mask: Optional[Tensor] = None,
) -> TransformerForwardResult:
result = super().forward(
inp=inp,
key_padding_mask=key_padding_mask,
)
return self.decode(result)
def forward_generate(
self, x: Tensor, input_pos: Optional[Tensor] = None
) -> TransformerForwardResult:
result = super().forward_generate(x, input_pos)
return self.decode(result)
class DualARTransformer(BaseTransformer):
def __init__(self, config: NaiveModelArgs, tokenizer: AutoTokenizer) -> None:
super().__init__(config, init_weights=False, tokenizer=tokenizer)
# Project to fast dim if needed
if config.fast_dim is not None and config.fast_dim != config.dim:
self.fast_project_in = nn.Linear(config.dim, config.fast_dim)
else:
self.fast_project_in = nn.Identity()
# Fast transformer
self.fast_embeddings = nn.Embedding(config.codebook_size, config.fast_dim)
# The equivalent bs is so large that sdpa doesn't work
override_config = dataclasses.replace(
config,
dim=config.fast_dim,
n_head=config.fast_n_head,
n_local_heads=config.fast_n_local_heads,
head_dim=config.fast_head_dim,
intermediate_size=config.fast_intermediate_size,
attention_qkv_bias=config.fast_attention_qkv_bias,
)
self.fast_layers = nn.ModuleList(
TransformerBlock(override_config, use_sdpa=False)
for _ in range(config.n_fast_layer)
)
self.fast_norm = RMSNorm(config.fast_dim, eps=config.norm_eps)
self.fast_output = nn.Linear(
config.fast_dim,
config.codebook_size,
bias=False,
)
self.register_buffer(
"fast_freqs_cis",
precompute_freqs_cis(
config.num_codebooks,
config.fast_dim // config.fast_n_head,
config.rope_base,
),
persistent=False,
)
self.apply(self._init_weights)
def setup_caches(
self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16
):
super().setup_caches(max_batch_size, max_seq_len, dtype)
head_dim = self.config.fast_dim // self.config.fast_n_head
# Fast transformer
# The max seq len here is the number of codebooks
for b in self.fast_layers:
b.attention.kv_cache = KVCache(
max_batch_size,
self.config.num_codebooks,
self.config.fast_n_local_heads,
head_dim,
dtype=dtype,
)
def forward(
self,
inp: Tensor,
key_padding_mask: Optional[Tensor] = None,
) -> TransformerForwardResult:
parent_result = super().forward(inp, key_padding_mask)
token_logits = parent_result.logits
x = parent_result.hidden_states
x = self.fast_project_in(x)
# Fast transformer
fast_seq_len = self.config.num_codebooks
fast_mask = self.causal_mask[
None, None, :fast_seq_len, :fast_seq_len
] # (B, N, Q, K)
# Drop the last token and rotate left
codebooks = inp[:, 1:-1, 1:]
codebooks = F.pad(codebooks, (0, 1), value=0)
codebook_embeddings = self.fast_embeddings(codebooks)
x = torch.cat([x[:, None], codebook_embeddings], dim=1)
b, s = x.size(0), x.size(2)
x = rearrange(x, "b n s d -> (b s) n d") # flatten the batch and seq_len
# Remove padded part
codebooks = rearrange(codebooks, "b n s -> (b s) n")
codebook_mask = (codebooks == 0).all(dim=-1)
if torch.all(codebook_mask):
# If all codebooks are padded, we keep first 8 to make sure the model runs
codebook_mask[:8] = False
x_bs, x_len = x.size(0), x.size(1)
x = x[~codebook_mask]
for layer in self.fast_layers:
if self.config.use_gradient_checkpointing and self.training:
x = checkpoint(
layer, x, self.fast_freqs_cis, fast_mask, use_reentrant=True
)
else:
x = layer(x, self.fast_freqs_cis, fast_mask)
# unflatten the batch and num_codebooks
fast_out = self.fast_norm(x)
codebook_logits = self.fast_output(fast_out)
# Re-pad the codebook_logits
buffer = torch.zeros(
x_bs,
x_len,
codebook_logits.size(-1),
device=codebook_logits.device,
dtype=codebook_logits.dtype,
)
buffer[~codebook_mask] = codebook_logits
codebook_logits = buffer
assert codebook_logits.shape[1] == self.config.num_codebooks
codebook_logits = rearrange(
codebook_logits,
"(b s) n d -> b s n d",
b=b,
s=s,
n=self.config.num_codebooks,
)
return TransformerForwardResult(
token_logits=token_logits,
codebook_logits=codebook_logits,
)
def forward_generate_fast(
self, x: Tensor, input_pos: Optional[Tensor] = None
) -> Tensor:
# Fast transformer
x = x.view(1, 1, -1)
fast_mask = self.causal_mask[
None, None, input_pos, : self.config.num_codebooks
] # (B, N, Q, K)
fast_freqs_cis = self.fast_freqs_cis[input_pos]
for layer in self.fast_layers:
x = layer(x, fast_freqs_cis, fast_mask, input_pos=input_pos)
# unflatten the batch and num_codebooks
fast_out = self.fast_norm(x) # only take the last token
codebook_logits = self.fast_output(fast_out)
return codebook_logits
def forward_generate(
self, x: Tensor, input_pos: Optional[Tensor] = None
) -> TransformerForwardResult:
x = super().forward_generate(x, input_pos)
x.hidden_states = self.fast_project_in(x.hidden_states)
return x
class TransformerBlock(nn.Module):
def __init__(self, config: BaseModelArgs, use_sdpa: bool = True) -> None:
super().__init__()
self.attention = Attention(config, use_sdpa=use_sdpa)
self.feed_forward = FeedForward(config)
self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
self.attention_norm = RMSNorm(config.dim, config.norm_eps)
def forward(
self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Tensor = None
) -> Tensor:
h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos)
out = h + self.feed_forward(self.ffn_norm(h))
return out
class Attention(nn.Module):
def __init__(self, config: BaseModelArgs, use_sdpa: bool = True):
super().__init__()
assert config.dim % config.n_head == 0
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
# key, query, value projections for all heads, but in a batch
self.wqkv = nn.Linear(
config.dim, total_head_dim, bias=config.attention_qkv_bias
)
self.wo = nn.Linear(config.dim, config.dim, bias=False)
self.kv_cache = None
self.dropout = config.dropout
self.n_head = config.n_head
self.head_dim = config.head_dim
self.n_local_heads = config.n_local_heads
self.dim = config.dim
self.use_sdpa = use_sdpa
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(self, state_dict, prefix, *args):
if prefix + "wq.weight" in state_dict:
wq = state_dict.pop(prefix + "wq.weight")
wk = state_dict.pop(prefix + "wk.weight")
wv = state_dict.pop(prefix + "wv.weight")
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
def forward(
self,
x: Tensor,
freqs_cis: Tensor,
mask: Tensor,
input_pos: Optional[Tensor] = None,
) -> Tensor:
bsz, seqlen, _ = x.shape
kv_size = self.n_local_heads * self.head_dim
q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim)
v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim)
q = apply_rotary_emb(q, freqs_cis)
k = apply_rotary_emb(k, freqs_cis)
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
if self.kv_cache is not None:
k, v = self.kv_cache.update(input_pos, k, v)
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
if self.use_sdpa:
if mask is None:
with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
y = F.scaled_dot_product_attention(
q,
k,
v,
dropout_p=self.dropout if self.training else 0.0,
is_causal=True,
# No third party attn_mask here to use flash_attention
)
else:
y = F.scaled_dot_product_attention(
q,
k,
v,
attn_mask=mask,
dropout_p=self.dropout if self.training else 0.0,
)
else:
y = self.eq_scaled_dot_product_attention(
q,
k,
v,
attn_mask=mask,
dropout_p=self.dropout if self.training else 0.0,
)
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
return self.wo(y)
def eq_scaled_dot_product_attention(
self,
query,
key,
value,
attn_mask=None,
dropout_p=0.0,
) -> torch.Tensor:
# This is a standard scaled dot product attention
# It's low efficient, but it doesn't raise cuda error
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1))
attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value
class FeedForward(nn.Module):
def __init__(self, config: BaseModelArgs) -> None:
super().__init__()
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
def forward(self, x: Tensor) -> Tensor:
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x: Tensor) -> Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor:
freqs = 1.0 / (
base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
)
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
return cache.to(dtype=torch.bfloat16)
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)