Spaces:
Running
on
L40S
Running
on
L40S
import dataclasses | |
import json | |
import math | |
from collections import OrderedDict | |
from dataclasses import dataclass | |
from pathlib import Path | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from loguru import logger | |
from torch import Tensor | |
from torch.nn import functional as F | |
from torch.nn.attention import SDPBackend, sdpa_kernel | |
from torch.utils.checkpoint import checkpoint | |
from transformers import AutoTokenizer | |
from fish_speech.conversation import SEMANTIC_TOKEN | |
from fish_speech.utils import RankedLogger | |
from .lora import LoraConfig, setup_lora | |
log = RankedLogger(__name__, rank_zero_only=True) | |
def find_multiple(n: int, k: int) -> int: | |
if n % k == 0: | |
return n | |
return n + k - (n % k) | |
class BaseModelArgs: | |
model_type: str = "base" | |
vocab_size: int = 32000 | |
n_layer: int = 32 | |
n_head: int = 32 | |
dim: int = 4096 | |
intermediate_size: int = None | |
n_local_heads: int = -1 | |
head_dim: int = 64 | |
rope_base: float = 10000 | |
norm_eps: float = 1e-5 | |
max_seq_len: int = 2048 | |
dropout: float = 0.0 | |
tie_word_embeddings: bool = True | |
attention_qkv_bias: bool = False | |
# Codebook configs | |
codebook_size: int = 160 | |
num_codebooks: int = 4 | |
# Gradient checkpointing | |
use_gradient_checkpointing: bool = True | |
# Initialize the model | |
initializer_range: float = 0.02 | |
# Dummy vars | |
is_reward_model: bool = False | |
share_codebook_embeddings: bool = True | |
def __post_init__(self): | |
if self.n_local_heads == -1: | |
self.n_local_heads = self.n_head | |
if self.intermediate_size is None: | |
hidden_dim = 4 * self.dim | |
n_hidden = int(2 * hidden_dim / 3) | |
self.intermediate_size = find_multiple(n_hidden, 256) | |
self.head_dim = self.dim // self.n_head | |
def from_pretrained(path: str): | |
path = Path(path) | |
if path.is_dir(): | |
path = path / "config.json" | |
with open(path, "r", encoding="utf-8") as f: | |
data = json.load(f) | |
match data["model_type"]: | |
case "naive": | |
cls = NaiveModelArgs | |
case "dual_ar": | |
cls = DualARModelArgs | |
case _: | |
raise ValueError(f"Unknown model type: {data['model_type']}") | |
return cls(**data) | |
def save(self, path: str): | |
with open(path, "w") as f: | |
json.dump(self.__dict__, f, indent=4, sort_keys=True, ensure_ascii=False) | |
class NaiveModelArgs(BaseModelArgs): | |
model_type: str = "naive" | |
class DualARModelArgs(BaseModelArgs): | |
model_type: str = "dual_ar" | |
n_fast_layer: int = 4 | |
fast_dim: int | None = None | |
fast_n_head: int | None = None | |
fast_n_local_heads: int | None = None | |
fast_head_dim: int | None = None | |
fast_intermediate_size: int | None = None | |
fast_attention_qkv_bias: bool | None = None | |
def __post_init__(self): | |
super().__post_init__() | |
self.fast_dim = self.fast_dim or self.dim | |
self.fast_n_head = self.fast_n_head or self.n_head | |
self.fast_n_local_heads = self.fast_n_local_heads or self.n_local_heads | |
self.fast_head_dim = self.fast_head_dim or self.head_dim | |
self.fast_intermediate_size = ( | |
self.fast_intermediate_size or self.intermediate_size | |
) | |
self.fast_attention_qkv_bias = ( | |
self.fast_attention_qkv_bias | |
if self.fast_attention_qkv_bias is not None | |
else self.attention_qkv_bias | |
) | |
class KVCache(nn.Module): | |
def __init__( | |
self, max_batch_size, max_seq_len, n_heads, head_dim, dtype=torch.bfloat16 | |
): | |
super().__init__() | |
cache_shape = (max_batch_size, n_heads, max_seq_len, head_dim) | |
self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype)) | |
self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype)) | |
def update(self, input_pos, k_val, v_val): | |
# input_pos: [S], k_val: [B, H, S, D] | |
assert input_pos.shape[0] == k_val.shape[2] | |
k_out = self.k_cache | |
v_out = self.v_cache | |
k_out[:, :, input_pos] = k_val | |
v_out[:, :, input_pos] = v_val | |
return k_out, v_out | |
class TransformerForwardResult: | |
token_logits: Tensor | |
codebook_logits: Tensor | |
class BaseTransformerForwardResult: | |
logits: Tensor | |
hidden_states: Tensor | |
class BaseTransformer(nn.Module): | |
def __init__( | |
self, config: BaseModelArgs, tokenizer: AutoTokenizer, init_weights: bool = True | |
) -> None: | |
super().__init__() | |
self.config = config | |
self.tokenizer = tokenizer | |
self.semantic_token_id = tokenizer.convert_tokens_to_ids(SEMANTIC_TOKEN) | |
# Slow transformer | |
self.embeddings = nn.Embedding( | |
config.vocab_size, | |
config.dim, | |
) | |
self.codebook_embeddings = nn.Embedding( | |
config.codebook_size * config.num_codebooks, | |
config.dim, | |
) | |
self.layers = nn.ModuleList( | |
TransformerBlock(config, use_sdpa=True) for _ in range(config.n_layer) | |
) | |
self.norm = RMSNorm(config.dim, eps=config.norm_eps) | |
if self.config.tie_word_embeddings is False: | |
self.output = nn.Linear( | |
config.dim, | |
config.vocab_size, | |
bias=False, | |
) | |
self.register_buffer( | |
"freqs_cis", | |
precompute_freqs_cis( | |
config.max_seq_len, | |
config.dim // config.n_head, | |
config.rope_base, | |
), | |
persistent=False, | |
) | |
self.register_buffer( | |
"causal_mask", | |
torch.tril( | |
torch.ones( | |
config.max_seq_len, | |
config.max_seq_len, | |
dtype=torch.bool, | |
) | |
), | |
persistent=False, | |
) | |
# For kv cache | |
self.max_batch_size = -1 | |
self.max_seq_len = -1 | |
if init_weights: | |
self.apply(self._init_weights) | |
def setup_caches( | |
self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16 | |
): | |
if self.max_seq_len >= max_seq_len and self.max_batch_size >= max_batch_size: | |
return | |
head_dim = self.config.dim // self.config.n_head | |
max_seq_len = find_multiple(max_seq_len, 8) | |
self.max_seq_len = max_seq_len | |
self.max_batch_size = max_batch_size | |
for b in self.layers: | |
b.attention.kv_cache = KVCache( | |
max_batch_size, | |
max_seq_len, | |
self.config.n_local_heads, | |
head_dim, | |
dtype=dtype, | |
) | |
def embed(self, x: Tensor) -> Tensor: | |
vocab_embeds = [self.embeddings(x[:, 0])] | |
for i in range(self.config.num_codebooks): | |
emb = self.codebook_embeddings(x[:, i + 1] + i * self.config.codebook_size) | |
emb[x[:, 0] != self.semantic_token_id] = 0 | |
vocab_embeds.append(emb) | |
x = torch.stack(vocab_embeds, dim=3) | |
x = x.sum(dim=3) | |
return x | |
def forward( | |
self, | |
inp: Tensor, | |
key_padding_mask: Optional[Tensor] = None, | |
) -> BaseTransformerForwardResult: | |
seq_len = inp.size(2) | |
# Here we want to merge the embeddings of the codebooks | |
x = self.embed(inp) | |
freqs_cis = self.freqs_cis[:seq_len] | |
# Not that the causal mask here follows the definition of scaled_dot_product_attention | |
# That is, FALSE means masked out | |
# To maintain consistency, key_padding_mask use TRUE to mask out | |
mask = None | |
if key_padding_mask is not None: | |
mask = self.causal_mask[None, None, :seq_len, :seq_len] # (B, N, Q, K) | |
mask = mask & key_padding_mask[:, None, None, :].logical_not() | |
for layer in self.layers: | |
if self.config.use_gradient_checkpointing and self.training: | |
x = checkpoint(layer, x, freqs_cis, mask, use_reentrant=True) | |
else: | |
x = layer(x, freqs_cis, mask) | |
# We got slow_out here | |
slow_out = self.norm(x) | |
if self.config.tie_word_embeddings: | |
token_logits = F.linear(slow_out, self.embeddings.weight) | |
else: | |
token_logits = self.output(slow_out) | |
return BaseTransformerForwardResult( | |
logits=token_logits, | |
hidden_states=x, | |
) | |
def forward_generate( | |
self, | |
x: Tensor, | |
input_pos: Optional[Tensor] = None, | |
return_all: bool = False, | |
) -> BaseTransformerForwardResult: | |
# This is used for generation, optimized for torch compile | |
assert ( | |
self.max_seq_len != -1 and self.max_batch_size != -1 | |
), "Please call setup_caches before forward_generate" | |
x = self.embed(x) | |
mask = self.causal_mask[ | |
None, None, input_pos, : self.max_seq_len | |
] # (B, N, Q, K) | |
freqs_cis = self.freqs_cis[input_pos] | |
for layer in self.layers: | |
x = layer(x, freqs_cis, mask, input_pos=input_pos) | |
# If prefill, we only calculate the logits of last token | |
if x.size(1) > 1 and not return_all: | |
x = x[:, -1:] | |
# We got slow_out here | |
slow_out = self.norm(x) | |
if self.config.tie_word_embeddings: | |
token_logits = F.linear(slow_out, self.embeddings.weight) | |
else: | |
token_logits = self.output(slow_out) | |
return BaseTransformerForwardResult( | |
logits=token_logits, | |
hidden_states=x, | |
) | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
def from_pretrained( | |
path: str, | |
load_weights: bool = False, | |
max_length: int | None = None, | |
lora_config: LoraConfig | None = None, | |
rope_base: int | None = None, | |
) -> "BaseTransformer": | |
config = BaseModelArgs.from_pretrained(str(path)) | |
if max_length is not None: | |
config.max_seq_len = max_length | |
log.info(f"Override max_seq_len to {max_length}") | |
if rope_base is not None: | |
config.rope_base = rope_base | |
log.info(f"Override rope_base to {rope_base}") | |
match config.model_type: | |
case "naive": | |
model_cls = NaiveTransformer | |
case "dual_ar": | |
model_cls = DualARTransformer | |
case _: | |
raise ValueError(f"Unknown model type: {config.model_type}") | |
tokenizer = AutoTokenizer.from_pretrained(str(path)) | |
log.info(f"Loading model from {path}, config: {config}") | |
model = model_cls(config, tokenizer=tokenizer) | |
if lora_config is not None: | |
setup_lora(model, lora_config) | |
log.info(f"LoRA setup: {lora_config}") | |
if load_weights is False: | |
log.info("Randomly initialized model") | |
else: | |
if "int8" in str(Path(path)): | |
logger.info("Using int8 weight-only quantization!") | |
from tools.llama.quantize import WeightOnlyInt8QuantHandler | |
simple_quantizer = WeightOnlyInt8QuantHandler(model) | |
model = simple_quantizer.convert_for_runtime() | |
if "int4" in str(Path(path)): | |
logger.info("Using int4 quantization!") | |
path_comps = path.name.split("-") | |
assert path_comps[-2].startswith("g") | |
groupsize = int(path_comps[-2][1:]) | |
from tools.llama.quantize import WeightOnlyInt4QuantHandler | |
simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize) | |
model = simple_quantizer.convert_for_runtime() | |
weights = torch.load( | |
Path(path) / "model.pth", | |
map_location="cpu", | |
mmap=True, | |
weights_only=True, | |
) | |
if "state_dict" in weights: | |
logger.warning( | |
"Using a TextToSemantic LightningModule checkpoint, " | |
"please make sure it is a full model, not a LoRA model." | |
) | |
weights = weights["state_dict"] | |
if next(iter(weights.keys())).startswith("model."): | |
logger.info( | |
f"Remove prefix 'model.' created by TextToSemantic LightningModule from keys" | |
) | |
new_weights = OrderedDict() | |
for k, v in weights.items(): | |
new_weights[k.replace("model.", "")] = v | |
weights = new_weights | |
# Verify the name and shape of parameters since strict=False in load_state_dict. | |
for k, v in model.named_parameters(): | |
if k not in weights: | |
logger.warning(f"No weight for {k}") | |
elif v.shape != weights[k].shape: | |
logger.warning( | |
f"Shape mismatch for {k}: {v.shape} vs {weights[k].shape}" | |
) | |
err = model.load_state_dict(weights, strict=False, assign=True) | |
log.info(f"Loaded weights with error: {err}") | |
return model | |
def save_pretrained(self, path: str, drop_lora: bool = False): | |
path = Path(path) | |
path.mkdir(parents=True, exist_ok=True) | |
self.config.save(path / "config.json") | |
state_dict = self.state_dict() | |
if drop_lora: | |
for key in list(state_dict.keys()): | |
if "lora" not in key: | |
continue | |
state_dict.pop(key) | |
log.info(f"Drop LoRA parameter: {key}") | |
torch.save(state_dict, path / "model.pth") | |
self.tokenizer.save_pretrained(path) | |
class NaiveTransformer(BaseTransformer): | |
def __init__(self, config: NaiveModelArgs, tokenizer: AutoTokenizer) -> None: | |
super().__init__(config, init_weights=False, tokenizer=tokenizer) | |
self.codebook_norm = RMSNorm(config.dim, eps=config.norm_eps) | |
self.codebook_output = nn.Linear( | |
config.dim, | |
config.codebook_size * config.num_codebooks, | |
bias=False, | |
) | |
self.apply(self._init_weights) | |
def decode(self, result: BaseTransformerForwardResult) -> TransformerForwardResult: | |
token_logits = result.logits | |
x = result.hidden_states | |
# Codebook | |
codebook_logits = self.codebook_output(self.codebook_norm(x)) | |
codebook_logits = rearrange( | |
codebook_logits, "b n (c d) -> b n c d", c=self.config.num_codebooks | |
) | |
return TransformerForwardResult( | |
token_logits=token_logits, | |
codebook_logits=codebook_logits, | |
) | |
def forward( | |
self, | |
inp: Tensor, | |
key_padding_mask: Optional[Tensor] = None, | |
) -> TransformerForwardResult: | |
result = super().forward( | |
inp=inp, | |
key_padding_mask=key_padding_mask, | |
) | |
return self.decode(result) | |
def forward_generate( | |
self, x: Tensor, input_pos: Optional[Tensor] = None | |
) -> TransformerForwardResult: | |
result = super().forward_generate(x, input_pos) | |
return self.decode(result) | |
class DualARTransformer(BaseTransformer): | |
def __init__(self, config: NaiveModelArgs, tokenizer: AutoTokenizer) -> None: | |
super().__init__(config, init_weights=False, tokenizer=tokenizer) | |
# Project to fast dim if needed | |
if config.fast_dim is not None and config.fast_dim != config.dim: | |
self.fast_project_in = nn.Linear(config.dim, config.fast_dim) | |
else: | |
self.fast_project_in = nn.Identity() | |
# Fast transformer | |
self.fast_embeddings = nn.Embedding(config.codebook_size, config.fast_dim) | |
# The equivalent bs is so large that sdpa doesn't work | |
override_config = dataclasses.replace( | |
config, | |
dim=config.fast_dim, | |
n_head=config.fast_n_head, | |
n_local_heads=config.fast_n_local_heads, | |
head_dim=config.fast_head_dim, | |
intermediate_size=config.fast_intermediate_size, | |
attention_qkv_bias=config.fast_attention_qkv_bias, | |
) | |
self.fast_layers = nn.ModuleList( | |
TransformerBlock(override_config, use_sdpa=False) | |
for _ in range(config.n_fast_layer) | |
) | |
self.fast_norm = RMSNorm(config.fast_dim, eps=config.norm_eps) | |
self.fast_output = nn.Linear( | |
config.fast_dim, | |
config.codebook_size, | |
bias=False, | |
) | |
self.register_buffer( | |
"fast_freqs_cis", | |
precompute_freqs_cis( | |
config.num_codebooks, | |
config.fast_dim // config.fast_n_head, | |
config.rope_base, | |
), | |
persistent=False, | |
) | |
self.apply(self._init_weights) | |
def setup_caches( | |
self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16 | |
): | |
super().setup_caches(max_batch_size, max_seq_len, dtype) | |
head_dim = self.config.fast_dim // self.config.fast_n_head | |
# Fast transformer | |
# The max seq len here is the number of codebooks | |
for b in self.fast_layers: | |
b.attention.kv_cache = KVCache( | |
max_batch_size, | |
self.config.num_codebooks, | |
self.config.fast_n_local_heads, | |
head_dim, | |
dtype=dtype, | |
) | |
def forward( | |
self, | |
inp: Tensor, | |
key_padding_mask: Optional[Tensor] = None, | |
) -> TransformerForwardResult: | |
parent_result = super().forward(inp, key_padding_mask) | |
token_logits = parent_result.logits | |
x = parent_result.hidden_states | |
x = self.fast_project_in(x) | |
# Fast transformer | |
fast_seq_len = self.config.num_codebooks | |
fast_mask = self.causal_mask[ | |
None, None, :fast_seq_len, :fast_seq_len | |
] # (B, N, Q, K) | |
# Drop the last token and rotate left | |
codebooks = inp[:, 1:-1, 1:] | |
codebooks = F.pad(codebooks, (0, 1), value=0) | |
codebook_embeddings = self.fast_embeddings(codebooks) | |
x = torch.cat([x[:, None], codebook_embeddings], dim=1) | |
b, s = x.size(0), x.size(2) | |
x = rearrange(x, "b n s d -> (b s) n d") # flatten the batch and seq_len | |
# Remove padded part | |
codebooks = rearrange(codebooks, "b n s -> (b s) n") | |
codebook_mask = (codebooks == 0).all(dim=-1) | |
if torch.all(codebook_mask): | |
# If all codebooks are padded, we keep first 8 to make sure the model runs | |
codebook_mask[:8] = False | |
x_bs, x_len = x.size(0), x.size(1) | |
x = x[~codebook_mask] | |
for layer in self.fast_layers: | |
if self.config.use_gradient_checkpointing and self.training: | |
x = checkpoint( | |
layer, x, self.fast_freqs_cis, fast_mask, use_reentrant=True | |
) | |
else: | |
x = layer(x, self.fast_freqs_cis, fast_mask) | |
# unflatten the batch and num_codebooks | |
fast_out = self.fast_norm(x) | |
codebook_logits = self.fast_output(fast_out) | |
# Re-pad the codebook_logits | |
buffer = torch.zeros( | |
x_bs, | |
x_len, | |
codebook_logits.size(-1), | |
device=codebook_logits.device, | |
dtype=codebook_logits.dtype, | |
) | |
buffer[~codebook_mask] = codebook_logits | |
codebook_logits = buffer | |
assert codebook_logits.shape[1] == self.config.num_codebooks | |
codebook_logits = rearrange( | |
codebook_logits, | |
"(b s) n d -> b s n d", | |
b=b, | |
s=s, | |
n=self.config.num_codebooks, | |
) | |
return TransformerForwardResult( | |
token_logits=token_logits, | |
codebook_logits=codebook_logits, | |
) | |
def forward_generate_fast( | |
self, x: Tensor, input_pos: Optional[Tensor] = None | |
) -> Tensor: | |
# Fast transformer | |
x = x.view(1, 1, -1) | |
fast_mask = self.causal_mask[ | |
None, None, input_pos, : self.config.num_codebooks | |
] # (B, N, Q, K) | |
fast_freqs_cis = self.fast_freqs_cis[input_pos] | |
for layer in self.fast_layers: | |
x = layer(x, fast_freqs_cis, fast_mask, input_pos=input_pos) | |
# unflatten the batch and num_codebooks | |
fast_out = self.fast_norm(x) # only take the last token | |
codebook_logits = self.fast_output(fast_out) | |
return codebook_logits | |
def forward_generate( | |
self, x: Tensor, input_pos: Optional[Tensor] = None | |
) -> TransformerForwardResult: | |
x = super().forward_generate(x, input_pos) | |
x.hidden_states = self.fast_project_in(x.hidden_states) | |
return x | |
class TransformerBlock(nn.Module): | |
def __init__(self, config: BaseModelArgs, use_sdpa: bool = True) -> None: | |
super().__init__() | |
self.attention = Attention(config, use_sdpa=use_sdpa) | |
self.feed_forward = FeedForward(config) | |
self.ffn_norm = RMSNorm(config.dim, config.norm_eps) | |
self.attention_norm = RMSNorm(config.dim, config.norm_eps) | |
def forward( | |
self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Tensor = None | |
) -> Tensor: | |
h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos) | |
out = h + self.feed_forward(self.ffn_norm(h)) | |
return out | |
class Attention(nn.Module): | |
def __init__(self, config: BaseModelArgs, use_sdpa: bool = True): | |
super().__init__() | |
assert config.dim % config.n_head == 0 | |
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim | |
# key, query, value projections for all heads, but in a batch | |
self.wqkv = nn.Linear( | |
config.dim, total_head_dim, bias=config.attention_qkv_bias | |
) | |
self.wo = nn.Linear(config.dim, config.dim, bias=False) | |
self.kv_cache = None | |
self.dropout = config.dropout | |
self.n_head = config.n_head | |
self.head_dim = config.head_dim | |
self.n_local_heads = config.n_local_heads | |
self.dim = config.dim | |
self.use_sdpa = use_sdpa | |
self._register_load_state_dict_pre_hook(self.load_hook) | |
def load_hook(self, state_dict, prefix, *args): | |
if prefix + "wq.weight" in state_dict: | |
wq = state_dict.pop(prefix + "wq.weight") | |
wk = state_dict.pop(prefix + "wk.weight") | |
wv = state_dict.pop(prefix + "wv.weight") | |
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) | |
def forward( | |
self, | |
x: Tensor, | |
freqs_cis: Tensor, | |
mask: Tensor, | |
input_pos: Optional[Tensor] = None, | |
) -> Tensor: | |
bsz, seqlen, _ = x.shape | |
kv_size = self.n_local_heads * self.head_dim | |
q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) | |
q = q.view(bsz, seqlen, self.n_head, self.head_dim) | |
k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
q = apply_rotary_emb(q, freqs_cis) | |
k = apply_rotary_emb(k, freqs_cis) | |
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) | |
if self.kv_cache is not None: | |
k, v = self.kv_cache.update(input_pos, k, v) | |
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | |
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | |
if self.use_sdpa: | |
if mask is None: | |
with sdpa_kernel(SDPBackend.FLASH_ATTENTION): | |
y = F.scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
dropout_p=self.dropout if self.training else 0.0, | |
is_causal=True, | |
# No third party attn_mask here to use flash_attention | |
) | |
else: | |
y = F.scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
attn_mask=mask, | |
dropout_p=self.dropout if self.training else 0.0, | |
) | |
else: | |
y = self.eq_scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
attn_mask=mask, | |
dropout_p=self.dropout if self.training else 0.0, | |
) | |
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) | |
return self.wo(y) | |
def eq_scaled_dot_product_attention( | |
self, | |
query, | |
key, | |
value, | |
attn_mask=None, | |
dropout_p=0.0, | |
) -> torch.Tensor: | |
# This is a standard scaled dot product attention | |
# It's low efficient, but it doesn't raise cuda error | |
L, S = query.size(-2), key.size(-2) | |
scale_factor = 1 / math.sqrt(query.size(-1)) | |
attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device) | |
if attn_mask is not None: | |
if attn_mask.dtype == torch.bool: | |
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) | |
else: | |
attn_bias += attn_mask | |
attn_weight = query @ key.transpose(-2, -1) * scale_factor | |
attn_weight += attn_bias | |
attn_weight = torch.softmax(attn_weight, dim=-1) | |
attn_weight = torch.dropout(attn_weight, dropout_p, train=True) | |
return attn_weight @ value | |
class FeedForward(nn.Module): | |
def __init__(self, config: BaseModelArgs) -> None: | |
super().__init__() | |
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) | |
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) | |
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) | |
def forward(self, x: Tensor) -> Tensor: | |
return self.w2(F.silu(self.w1(x)) * self.w3(x)) | |
class RMSNorm(nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-5): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) | |
def forward(self, x: Tensor) -> Tensor: | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight | |
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor: | |
freqs = 1.0 / ( | |
base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem) | |
) | |
t = torch.arange(seq_len, device=freqs.device) | |
freqs = torch.outer(t, freqs) | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) | |
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) | |
return cache.to(dtype=torch.bfloat16) | |
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: | |
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) | |
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) | |
x_out2 = torch.stack( | |
[ | |
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], | |
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], | |
], | |
-1, | |
) | |
x_out2 = x_out2.flatten(3) | |
return x_out2.type_as(x) | |