Spaces:
Running
on
L40S
Running
on
L40S
File size: 6,845 Bytes
4f6613a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import os
import subprocess as sp
import sys
import time
from datetime import timedelta
from functools import lru_cache
from pathlib import Path
from random import Random
import click
import numpy as np
import torch
import torchaudio
from hydra import compose, initialize
from hydra.utils import instantiate
from lightning import LightningModule
from loguru import logger
from omegaconf import OmegaConf
from tools.file import AUDIO_EXTENSIONS, list_files, load_filelist
# register eval resolver
OmegaConf.register_new_resolver("eval", eval)
# This file is used to convert the audio files to text files using the Whisper model.
# It's mainly used to generate the training data for the VQ model.
backends = torchaudio.list_audio_backends()
if "ffmpeg" in backends:
backend = "ffmpeg"
else:
backend = "soundfile"
RANK = int(os.environ.get("SLURM_PROCID", 0))
WORLD_SIZE = int(os.environ.get("SLURM_NTASKS", 1))
logger_format = (
"<green>{time:YYYY-MM-DD HH:mm:ss.SSS}</green> | "
"<level>{level: <8}</level> | "
"<cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> | "
"{extra[rank]} - <level>{message}</level>"
)
logger.configure(extra={"rank": f"RANK: {RANK} / {WORLD_SIZE}"})
logger.remove()
logger.add(sys.stderr, format=logger_format)
@lru_cache(maxsize=1)
def get_model(
config_name: str = "firefly_gan_vq",
checkpoint_path: str = "checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth",
device: str | torch.device = "cuda",
):
with initialize(version_base="1.3", config_path="../../fish_speech/configs"):
cfg = compose(config_name=config_name)
model = instantiate(cfg)
state_dict = torch.load(
checkpoint_path,
map_location=device,
)
if "state_dict" in state_dict:
state_dict = state_dict["state_dict"]
if any("generator" in k for k in state_dict):
state_dict = {
k.replace("generator.", ""): v
for k, v in state_dict.items()
if "generator." in k
}
model.load_state_dict(state_dict, strict=False)
model.eval()
model.to(device)
logger.info(f"Loaded model")
return model
@torch.inference_mode()
def process_batch(files: list[Path], model) -> float:
wavs = []
audio_lengths = []
new_files = []
max_length = total_time = 0
for file in files:
try:
wav, sr = torchaudio.load(
str(file), backend=backend
) # Need to install libsox-dev
except Exception as e:
logger.error(f"Error reading {file}: {e}")
continue
if wav.shape[0] > 1:
wav = wav.mean(dim=0, keepdim=True)
wav = torchaudio.functional.resample(
wav.cuda(), sr, model.spec_transform.sample_rate
)[0]
total_time += len(wav) / model.spec_transform.sample_rate
max_length = max(max_length, len(wav))
wavs.append(wav)
audio_lengths.append(len(wav))
new_files.append(file)
files = new_files
# Pad to max length
for i, wav in enumerate(wavs):
wavs[i] = torch.nn.functional.pad(wav, (0, max_length - len(wav)), "constant")
audios = torch.stack(wavs, dim=0)[:, None]
audio_lengths = torch.tensor(audio_lengths, device=model.device, dtype=torch.long)
# Calculate lengths
indices, feature_lengths = model.encode(audios, audio_lengths)
# Save to disk
outputs = indices.cpu().numpy()
for file, length, feature, audio_length in zip(
files, feature_lengths, outputs, audio_lengths
):
feature = feature[:, :length]
# (T,)
with open(file.with_suffix(".npy"), "wb") as f:
np.save(f, feature)
return total_time
@click.command()
@click.argument("folder")
@click.option("--num-workers", default=1)
@click.option("--config-name", default="firefly_gan_vq")
@click.option(
"--checkpoint-path",
default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth",
)
@click.option("--batch-size", default=64)
@click.option("--filelist", default=None, type=Path)
def main(
folder: str,
num_workers: int,
config_name: str,
checkpoint_path: str,
batch_size: int,
filelist: Path,
):
if num_workers > 1 and WORLD_SIZE != num_workers:
assert WORLD_SIZE == 1, "You should either use SLURM or this launcher, not both"
logger.info(f"Spawning {num_workers} workers")
if torch.cuda.is_available():
visible_devices = os.environ.get("CUDA_VISIBLE_DEVICES", None)
if visible_devices is None:
visible_devices = list(range(torch.cuda.device_count()))
else:
visible_devices = visible_devices.split(",")
else:
# Set to empty string to avoid using GPU
visible_devices = [""]
processes = []
for i in range(num_workers):
env = os.environ.copy()
env["CUDA_VISIBLE_DEVICES"] = str(visible_devices[i % len(visible_devices)])
env["SLURM_PROCID"] = str(i)
env["SLURM_NTASKS"] = str(num_workers)
processes.append(
sp.Popen(
[sys.executable] + sys.argv.copy(),
env=env,
)
)
for p in processes:
p.wait()
logger.info(f"All workers finished")
return
# This is a worker
logger.info(f"Starting worker")
if filelist:
files = [i[0] for i in load_filelist(filelist)]
else:
files = list_files(folder, AUDIO_EXTENSIONS, recursive=True, sort=False)
print(f"Found {len(files)} files")
files = [Path(f) for f in files if not Path(f).with_suffix(".npy").exists()]
total_files = len(files)
files = files[RANK::WORLD_SIZE]
logger.info(f"Processing {len(files)}/{total_files} files")
# Batch processing
total_time = 0
begin_time = time.time()
processed_files = 0
model = get_model(config_name, checkpoint_path)
for n_batch, idx in enumerate(range(0, len(files), batch_size)):
batch = files[idx : idx + batch_size]
batch_time = process_batch(batch, model)
total_time += batch_time
processed_files += len(batch)
if (n_batch + 1) % 10 == 0:
eta = (
(time.time() - begin_time)
/ processed_files
* (len(files) - processed_files)
)
logger.info(
f"Processed {processed_files} files, {total_time / 3600:.2f} hours of audio, "
+ f"ETA: {timedelta(seconds=round(eta))}s"
)
logger.info(
f"Finished processing {len(files)} files, {total_time / 3600:.2f} hours of audio"
)
if __name__ == "__main__":
main()
|