File size: 4,893 Bytes
4f6613a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""
Used to transcribe all audio files in one folder into another folder.
e.g.
Directory structure:
--pre_data_root
----SP_1
------01.wav
------02.wav
------......
----SP_2
------01.wav
------02.wav
------......
Use 
python tools/whisper_asr.py --audio-dir pre_data_root/SP_1 --save-dir data/SP_1 
to transcribe the first speaker.

Use 
python tools/whisper_asr.py --audio-dir pre_data_root/SP_2 --save-dir data/SP_2 
to transcribe the second speaker.

Note: Be aware of your audio sample rate, which defaults to 44.1kHz.
"""

import re
from pathlib import Path

import click
import soundfile as sf
from faster_whisper import WhisperModel
from loguru import logger
from pydub import AudioSegment
from tqdm import tqdm

from tools.file import AUDIO_EXTENSIONS, list_files


@click.command()
@click.option("--model-size", default="large-v3", help="Size of the Whisper model")
@click.option(
    "--compute-type",
    default="float16",
    help="Computation Precision of the Whisper model [float16 / int8_float16 / int8]",
)
@click.option("--audio-dir", required=True, help="Directory containing audio files")
@click.option(
    "--save-dir", required=True, help="Directory to save processed audio files"
)
@click.option(
    "--sample-rate",
    default=44100,
    type=int,
    help="Output sample rate, default to input sample rate",
)
@click.option("--device", default="cuda", help="Device to use [cuda / cpu]")
@click.option("--language", default="auto", help="Language of the transcription")
@click.option("--initial-prompt", default=None, help="Initial prompt for transcribing")
def main(
    model_size,
    compute_type,
    audio_dir,
    save_dir,
    sample_rate,
    device,
    language,
    initial_prompt,
):
    logger.info("Loading / Downloading Faster Whisper model...")

    model = WhisperModel(
        model_size,
        device=device,
        compute_type=compute_type,
        download_root="faster_whisper",
    )

    logger.info("Model loaded.")

    save_path = Path(save_dir)
    save_path.mkdir(parents=True, exist_ok=True)

    audio_files = list_files(
        path=audio_dir, extensions=AUDIO_EXTENSIONS, recursive=True
    )

    for file_path in tqdm(audio_files, desc="Processing audio file"):
        file_stem = file_path.stem
        file_suffix = file_path.suffix

        rel_path = Path(file_path).relative_to(audio_dir)
        (save_path / rel_path.parent).mkdir(parents=True, exist_ok=True)

        audio = AudioSegment.from_file(file_path)

        segments, info = model.transcribe(
            file_path,
            beam_size=5,
            language=None if language == "auto" else language,
            initial_prompt=initial_prompt,
        )

        print(
            "Detected language '%s' with probability %f"
            % (info.language, info.language_probability)
        )
        print("Total len(ms): ", len(audio))

        whole_text = None
        for segment in segments:
            id, start, end, text = (
                segment.id,
                segment.start,
                segment.end,
                segment.text,
            )
            print("Segment %03d [%.2fs -> %.2fs] %s" % (id, start, end, text))
            if not whole_text:
                whole_text = text
            else:
                whole_text += ", " + text

        whole_text += "."

        audio_save_path = save_path / rel_path.parent / f"{file_stem}{file_suffix}"
        audio.export(audio_save_path, format=file_suffix[1:])
        print(f"Exported {audio_save_path}")

        transcript_save_path = save_path / rel_path.parent / f"{file_stem}.lab"
        with open(
            transcript_save_path,
            "w",
            encoding="utf-8",
        ) as f:
            f.write(whole_text)


if __name__ == "__main__":
    main()
    exit(0)

    audio = AudioSegment.from_wav(
        r"D:\PythonProject\原神语音中文\胡桃\vo_hutao_draw_appear.wav"
    )

    model_size = "large-v3"

    model = WhisperModel(
        model_size,
        device="cuda",
        compute_type="float16",
        download_root="faster_whisper",
    )

    segments, info = model.transcribe(
        r"D:\PythonProject\原神语音中文\胡桃\vo_hutao_draw_appear.wav",
        beam_size=5,
    )

    print(
        "Detected language '%s' with probability %f"
        % (info.language, info.language_probability)
    )
    print("Total len(ms): ", len(audio))

    for i, segment in enumerate(segments):
        print(
            "Segment %03d [%.2fs -> %.2fs] %s"
            % (i, segment.start, segment.end, segment.text)
        )
        start_ms = int(segment.start * 1000)
        end_ms = int(segment.end * 1000)
        segment_audio = audio[start_ms:end_ms]
        segment_audio.export(f"segment_{i:03d}.wav", format="wav")
        print(f"Exported segment_{i:03d}.wav")

    print("All segments have been exported.")