Spaces:
Running
on
A10G
Running
on
A10G
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
4 |
from diffusers.utils import export_to_video
|
@@ -12,7 +13,7 @@ def infer(prompt):
|
|
12 |
video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames
|
13 |
video_path = export_to_video(video_frames)
|
14 |
print(video_path)
|
15 |
-
return video_path
|
16 |
|
17 |
css = """
|
18 |
#col-container {max-width: 510px; margin-left: auto; margin-right: auto;}
|
@@ -24,23 +25,27 @@ with gr.Blocks(css=css) as demo:
|
|
24 |
gr.Markdown(
|
25 |
"""
|
26 |
<h1 style="text-align: center;">Zeroscope Text-to-Video</h1>
|
27 |
-
|
28 |
A watermark-free Modelscope-based video model optimized for producing high-quality 16:9 compositions and a smooth video output. <br />
|
29 |
-
This zeroscope_v2_576w model was trained using 9,923 clips and 29,769 tagged frames at 24 frames, 576x320 resolution.<br />
|
30 |
|
31 |
[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg)](https://huggingface.co/spaces/fffiloni/zeroscope?duplicate=true)
|
32 |
-
|
33 |
"""
|
34 |
)
|
35 |
|
36 |
-
prompt_in = gr.Textbox(label="Prompt", placeholder="Darth Vader is surfing on waves")
|
37 |
#inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=1, value=40, interactive=False)
|
38 |
submit_btn = gr.Button("Submit")
|
39 |
-
video_result = gr.Video(label="Video Output")
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
submit_btn.click(fn=infer,
|
42 |
inputs=[prompt_in],
|
43 |
-
outputs=[video_result])
|
44 |
|
45 |
demo.queue(max_size=12).launch()
|
46 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from share_btn import community_icon_html, loading_icon_html, share_js
|
3 |
import torch
|
4 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
5 |
from diffusers.utils import export_to_video
|
|
|
13 |
video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames
|
14 |
video_path = export_to_video(video_frames)
|
15 |
print(video_path)
|
16 |
+
return video_path, gr.Group.update(visible=True)
|
17 |
|
18 |
css = """
|
19 |
#col-container {max-width: 510px; margin-left: auto; margin-right: auto;}
|
|
|
25 |
gr.Markdown(
|
26 |
"""
|
27 |
<h1 style="text-align: center;">Zeroscope Text-to-Video</h1>
|
28 |
+
<p style="text-align: center;">
|
29 |
A watermark-free Modelscope-based video model optimized for producing high-quality 16:9 compositions and a smooth video output. <br />
|
|
|
30 |
|
31 |
[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg)](https://huggingface.co/spaces/fffiloni/zeroscope?duplicate=true)
|
32 |
+
</p>
|
33 |
"""
|
34 |
)
|
35 |
|
36 |
+
prompt_in = gr.Textbox(label="Prompt", placeholder="Darth Vader is surfing on waves", elem_id="prompt-in")
|
37 |
#inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=1, value=40, interactive=False)
|
38 |
submit_btn = gr.Button("Submit")
|
39 |
+
video_result = gr.Video(label="Video Output", elem_id="video-output")
|
40 |
+
|
41 |
+
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
42 |
+
community_icon = gr.HTML(community_icon_html)
|
43 |
+
loading_icon = gr.HTML(loading_icon_html)
|
44 |
+
share_button = gr.Button("Share to community", elem_id="share-btn")
|
45 |
|
46 |
submit_btn.click(fn=infer,
|
47 |
inputs=[prompt_in],
|
48 |
+
outputs=[video_result, share_group])
|
49 |
|
50 |
demo.queue(max_size=12).launch()
|
51 |
|