import gradio as gr from gradio_client import Client, handle_file def get_speech(text, voice): client = Client("collabora/WhisperSpeech") result = client.predict( multilingual_text=text, speaker_audio=handle_file(voice), speaker_url="", cps=14, api_name="/whisper_speech_demo" ) print(result) return result def get_dreamtalk(image_in, speech): client = Client("fffiloni/dreamtalk") result = client.predict( audio_input=handle_file(speech), image_path=handle_file(image_in), emotional_style="M030_front_neutral_level1_001.mat", api_name="/infer" ) print(result) return result['video'] def pipe (text, voice, image_in): speech = get_speech(text, voice) try: video = get_dreamtalk(image_in, speech) except: raise gr.Error('An error occurred while loading DreamTalk: Image may not contain any face') return video with gr.Blocks() as demo: with gr.Column(): gr.HTML("""