# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the sav_dataset directory of this source tree. # adapted from https://github.com/hkchengrex/vos-benchmark # and https://github.com/davisvideochallenge/davis2017-evaluation # with their licenses found in the LICENSE_VOS_BENCHMARK and LICENSE_DAVIS files # in the sav_dataset directory. import math import os import time from collections import defaultdict from multiprocessing import Pool from os import path from typing import Dict, List, Tuple import cv2 import numpy as np import tqdm from PIL import Image from skimage.morphology import disk class VideoEvaluator: def __init__(self, gt_root, pred_root, skip_first_and_last=True) -> None: """ gt_root: path to the folder storing the gt masks pred_root: path to the folder storing the predicted masks skip_first_and_last: whether we should skip the evaluation of the first and the last frame. True for SA-V val and test, same as in DAVIS semi-supervised evaluation. """ self.gt_root = gt_root self.pred_root = pred_root self.skip_first_and_last = skip_first_and_last def __call__(self, vid_name: str) -> Tuple[str, Dict[str, float], Dict[str, float]]: """ vid_name: name of the video to evaluate """ # scan the folder to find subfolders for evaluation and # check if the folder structure is SA-V to_evaluate, is_sav_format = self.scan_vid_folder(vid_name) # evaluate each (gt_path, pred_path) pair eval_results = [] for all_frames, obj_id, gt_path, pred_path in to_evaluate: if self.skip_first_and_last: # skip the first and the last frames all_frames = all_frames[1:-1] evaluator = Evaluator(name=vid_name, obj_id=obj_id) for frame in all_frames: gt_array, pred_array = self.get_gt_and_pred( gt_path, pred_path, frame, is_sav_format ) evaluator.feed_frame(mask=pred_array, gt=gt_array) iou, boundary_f = evaluator.conclude() eval_results.append((obj_id, iou, boundary_f)) if is_sav_format: iou_output, boundary_f_output = self.consolidate(eval_results) else: assert len(eval_results) == 1 iou_output = eval_results[0][1] boundary_f_output = eval_results[0][2] return vid_name, iou_output, boundary_f_output def get_gt_and_pred( self, gt_path: str, pred_path: str, f_name: str, is_sav_format: bool, ) -> Tuple[np.ndarray, np.ndarray]: """ Get the ground-truth and predicted masks for a single frame. """ gt_mask_path = path.join(gt_path, f_name) pred_mask_path = path.join(pred_path, f_name) assert os.path.exists(pred_mask_path), f"{pred_mask_path} not found" gt_array = np.array(Image.open(gt_mask_path)) pred_array = np.array(Image.open(pred_mask_path)) assert ( gt_array.shape[-2:] == pred_array.shape[-2:] ), f"shape mismatch: {gt_mask_path}, {pred_mask_path}" if is_sav_format: assert len(np.unique(gt_array)) <= 2, ( f"found more than 1 object in {gt_mask_path} " "SA-V format assumes one object mask per png file." ) assert len(np.unique(pred_array)) <= 2, ( f"found more than 1 object in {pred_mask_path} " "SA-V format assumes one object mask per png file." ) gt_array = gt_array > 0 pred_array = pred_array > 0 return gt_array, pred_array def scan_vid_folder(self, vid_name) -> Tuple[List, bool]: """ Scan the folder structure of the video and return a list of folders for evaluate. """ vid_gt_path = path.join(self.gt_root, vid_name) vid_pred_path = path.join(self.pred_root, vid_name) all_files_and_dirs = sorted(os.listdir(vid_gt_path)) to_evaluate = [] if all(name.endswith(".png") for name in all_files_and_dirs): # All files are png files, dataset structure similar to DAVIS is_sav_format = False frames = all_files_and_dirs obj_dir = None to_evaluate.append((frames, obj_dir, vid_gt_path, vid_pred_path)) else: # SA-V dataset structure, going one layer down into each subdirectory is_sav_format = True for obj_dir in all_files_and_dirs: obj_gt_path = path.join(vid_gt_path, obj_dir) obj_pred_path = path.join(vid_pred_path, obj_dir) frames = sorted(os.listdir(obj_gt_path)) to_evaluate.append((frames, obj_dir, obj_gt_path, obj_pred_path)) return to_evaluate, is_sav_format def consolidate( self, eval_results ) -> Tuple[str, Dict[str, float], Dict[str, float]]: """ Consolidate the results of all the objects from the video into one dictionary. """ iou_output = {} boundary_f_output = {} for obj_id, iou, boundary_f in eval_results: assert len(iou) == 1 key = list(iou.keys())[0] iou_output[obj_id] = iou[key] boundary_f_output[obj_id] = boundary_f[key] return iou_output, boundary_f_output ################################################################################################################# # Functions below are from https://github.com/hkchengrex/vos-benchmark with minor modifications # _seg2bmap from https://github.com/hkchengrex/vos-benchmark/blob/main/vos_benchmark/utils.py # get_iou and Evaluator from https://github.com/hkchengrex/vos-benchmark/blob/main/vos_benchmark/evaluator.py # benchmark from https://github.com/hkchengrex/vos-benchmark/blob/main/vos_benchmark/benchmark.py with slight mod ################################################################################################################# def _seg2bmap(seg, width=None, height=None): """ From a segmentation, compute a binary boundary map with 1 pixel wide boundaries. The boundary pixels are offset by 1/2 pixel towards the origin from the actual segment boundary. Arguments: seg : Segments labeled from 1..k. width : Width of desired bmap <= seg.shape[1] height : Height of desired bmap <= seg.shape[0] Returns: bmap (ndarray): Binary boundary map. David Martin January 2003 """ seg = seg.astype(bool) seg[seg > 0] = 1 assert np.atleast_3d(seg).shape[2] == 1 width = seg.shape[1] if width is None else width height = seg.shape[0] if height is None else height h, w = seg.shape[:2] ar1 = float(width) / float(height) ar2 = float(w) / float(h) assert not ( width > w | height > h | abs(ar1 - ar2) > 0.01 ), "Can" "t convert %dx%d seg to %dx%d bmap." % (w, h, width, height) e = np.zeros_like(seg) s = np.zeros_like(seg) se = np.zeros_like(seg) e[:, :-1] = seg[:, 1:] s[:-1, :] = seg[1:, :] se[:-1, :-1] = seg[1:, 1:] b = seg ^ e | seg ^ s | seg ^ se b[-1, :] = seg[-1, :] ^ e[-1, :] b[:, -1] = seg[:, -1] ^ s[:, -1] b[-1, -1] = 0 if w == width and h == height: bmap = b else: bmap = np.zeros((height, width)) for x in range(w): for y in range(h): if b[y, x]: j = 1 + math.floor((y - 1) + height / h) i = 1 + math.floor((x - 1) + width / h) bmap[j, i] = 1 return bmap def get_iou(intersection, pixel_sum): # handle edge cases without resorting to epsilon if intersection == pixel_sum: # both mask and gt have zero pixels in them assert intersection == 0 return 1 return intersection / (pixel_sum - intersection) class Evaluator: def __init__(self, boundary=0.008, name=None, obj_id=None): # boundary: used in computing boundary F-score self.boundary = boundary self.name = name self.obj_id = obj_id self.objects_in_gt = set() self.objects_in_masks = set() self.object_iou = defaultdict(list) self.boundary_f = defaultdict(list) def feed_frame(self, mask: np.ndarray, gt: np.ndarray): """ Compute and accumulate metrics for a single frame (mask/gt pair) """ # get all objects in the ground-truth gt_objects = np.unique(gt) gt_objects = gt_objects[gt_objects != 0].tolist() # get all objects in the predicted mask mask_objects = np.unique(mask) mask_objects = mask_objects[mask_objects != 0].tolist() self.objects_in_gt.update(set(gt_objects)) self.objects_in_masks.update(set(mask_objects)) all_objects = self.objects_in_gt.union(self.objects_in_masks) # boundary disk for boundary F-score. It is the same for all objects. bound_pix = np.ceil(self.boundary * np.linalg.norm(mask.shape)) boundary_disk = disk(bound_pix) for obj_idx in all_objects: obj_mask = mask == obj_idx obj_gt = gt == obj_idx # object iou self.object_iou[obj_idx].append( get_iou((obj_mask * obj_gt).sum(), obj_mask.sum() + obj_gt.sum()) ) """ # boundary f-score This part is copied from davis2017-evaluation """ mask_boundary = _seg2bmap(obj_mask) gt_boundary = _seg2bmap(obj_gt) mask_dilated = cv2.dilate(mask_boundary.astype(np.uint8), boundary_disk) gt_dilated = cv2.dilate(gt_boundary.astype(np.uint8), boundary_disk) # Get the intersection gt_match = gt_boundary * mask_dilated fg_match = mask_boundary * gt_dilated # Area of the intersection n_fg = np.sum(mask_boundary) n_gt = np.sum(gt_boundary) # Compute precision and recall if n_fg == 0 and n_gt > 0: precision = 1 recall = 0 elif n_fg > 0 and n_gt == 0: precision = 0 recall = 1 elif n_fg == 0 and n_gt == 0: precision = 1 recall = 1 else: precision = np.sum(fg_match) / float(n_fg) recall = np.sum(gt_match) / float(n_gt) # Compute F measure if precision + recall == 0: F = 0 else: F = 2 * precision * recall / (precision + recall) self.boundary_f[obj_idx].append(F) def conclude(self): all_iou = {} all_boundary_f = {} for object_id in self.objects_in_gt: all_iou[object_id] = np.mean(self.object_iou[object_id]) * 100 all_boundary_f[object_id] = np.mean(self.boundary_f[object_id]) * 100 return all_iou, all_boundary_f def benchmark( gt_roots, mask_roots, strict=True, num_processes=None, *, verbose=True, skip_first_and_last=True, ): """ gt_roots: a list of paths to datasets, i.e., [path_to_DatasetA, path_to_DatasetB, ...] mask_roots: same as above, but the .png are masks predicted by the model strict: when True, all videos in the dataset must have corresponding predictions. Setting it to False is useful in cases where the ground-truth contains both train/val sets, but the model only predicts the val subset. Either way, if a video is predicted (i.e., the corresponding folder exists), then it must at least contain all the masks in the ground truth annotations. Masks that are in the prediction but not in the ground-truth (i.e., sparse annotations) are ignored. skip_first_and_last: whether we should skip the first and the last frame in evaluation. This is used by DAVIS 2017 in their semi-supervised evaluation. It should be disabled for unsupervised evaluation. """ assert len(gt_roots) == len(mask_roots) single_dataset = len(gt_roots) == 1 if verbose: if skip_first_and_last: print( "We are *SKIPPING* the evaluation of the first and the last frame (standard for semi-supervised video object segmentation)." ) else: print( "We are *NOT SKIPPING* the evaluation of the first and the last frame (*NOT STANDARD* for semi-supervised video object segmentation)." ) pool = Pool(num_processes) start = time.time() to_wait = [] for gt_root, mask_root in zip(gt_roots, mask_roots): # Validate folders validated = True gt_videos = os.listdir(gt_root) mask_videos = os.listdir(mask_root) # if the user passed the root directory instead of Annotations if len(gt_videos) != len(mask_videos): if "Annotations" in gt_videos: if ".png" not in os.listdir(path.join(gt_root, "Annotations"))[0]: gt_root = path.join(gt_root, "Annotations") gt_videos = os.listdir(gt_root) # remove non-folder items gt_videos = list(filter(lambda x: path.isdir(path.join(gt_root, x)), gt_videos)) mask_videos = list( filter(lambda x: path.isdir(path.join(mask_root, x)), mask_videos) ) if not strict: videos = sorted(list(set(gt_videos) & set(mask_videos))) else: gt_extras = set(gt_videos) - set(mask_videos) mask_extras = set(mask_videos) - set(gt_videos) if len(gt_extras) > 0: print( f"Videos that are in {gt_root} but not in {mask_root}: {gt_extras}" ) validated = False if len(mask_extras) > 0: print( f"Videos that are in {mask_root} but not in {gt_root}: {mask_extras}" ) validated = False if not validated: print("Validation failed. Exiting.") exit(1) videos = sorted(gt_videos) if verbose: print( f"In dataset {gt_root}, we are evaluating on {len(videos)} videos: {videos}" ) if single_dataset: if verbose: results = tqdm.tqdm( pool.imap( VideoEvaluator( gt_root, mask_root, skip_first_and_last=skip_first_and_last ), videos, ), total=len(videos), ) else: results = pool.map( VideoEvaluator( gt_root, mask_root, skip_first_and_last=skip_first_and_last ), videos, ) else: to_wait.append( pool.map_async( VideoEvaluator( gt_root, mask_root, skip_first_and_last=skip_first_and_last ), videos, ) ) pool.close() all_global_jf, all_global_j, all_global_f = [], [], [] all_object_metrics = [] for i, mask_root in enumerate(mask_roots): if not single_dataset: results = to_wait[i].get() all_iou = [] all_boundary_f = [] object_metrics = {} for name, iou, boundary_f in results: all_iou.extend(list(iou.values())) all_boundary_f.extend(list(boundary_f.values())) object_metrics[name] = (iou, boundary_f) global_j = np.array(all_iou).mean() global_f = np.array(all_boundary_f).mean() global_jf = (global_j + global_f) / 2 time_taken = time.time() - start """ Build string for reporting results """ # find max length for padding ml = max(*[len(n) for n in object_metrics.keys()], len("Global score")) # build header out_string = f'{"sequence":<{ml}},{"obj":>3}, {"J&F":>4}, {"J":>4}, {"F":>4}\n' out_string += f'{"Global score":<{ml}},{"":>3}, {global_jf:.1f}, {global_j:.1f}, {global_f:.1f}\n' # append one line for each object for name, (iou, boundary_f) in object_metrics.items(): for object_idx in iou.keys(): j, f = iou[object_idx], boundary_f[object_idx] jf = (j + f) / 2 out_string += ( f"{name:<{ml}},{object_idx:03}, {jf:>4.1f}, {j:>4.1f}, {f:>4.1f}\n" ) # print to console if verbose: print(out_string.replace(",", " "), end="") print("\nSummary:") print( f"Global score: J&F: {global_jf:.1f} J: {global_j:.1f} F: {global_f:.1f}" ) print(f"Time taken: {time_taken:.2f}s") # print to file result_path = path.join(mask_root, "results.csv") print(f"Saving the results to {result_path}") with open(result_path, "w") as f: f.write(out_string) all_global_jf.append(global_jf) all_global_j.append(global_j) all_global_f.append(global_f) all_object_metrics.append(object_metrics) return all_global_jf, all_global_j, all_global_f, all_object_metrics