Spaces:
Sleeping
Sleeping
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py | |
from typing import Any, Dict, List, Optional, Tuple | |
import numpy as np | |
import torch | |
from torchvision.ops.boxes import batched_nms, box_area # type: ignore | |
from sam2.modeling.sam2_base import SAM2Base | |
from sam2.sam2_image_predictor import SAM2ImagePredictor | |
from sam2.utils.amg import ( | |
area_from_rle, | |
batch_iterator, | |
batched_mask_to_box, | |
box_xyxy_to_xywh, | |
build_all_layer_point_grids, | |
calculate_stability_score, | |
coco_encode_rle, | |
generate_crop_boxes, | |
is_box_near_crop_edge, | |
mask_to_rle_pytorch, | |
MaskData, | |
remove_small_regions, | |
rle_to_mask, | |
uncrop_boxes_xyxy, | |
uncrop_masks, | |
uncrop_points, | |
) | |
class SAM2AutomaticMaskGenerator: | |
def __init__( | |
self, | |
model: SAM2Base, | |
points_per_side: Optional[int] = 32, | |
points_per_batch: int = 64, | |
pred_iou_thresh: float = 0.8, | |
stability_score_thresh: float = 0.95, | |
stability_score_offset: float = 1.0, | |
mask_threshold: float = 0.0, | |
box_nms_thresh: float = 0.7, | |
crop_n_layers: int = 0, | |
crop_nms_thresh: float = 0.7, | |
crop_overlap_ratio: float = 512 / 1500, | |
crop_n_points_downscale_factor: int = 1, | |
point_grids: Optional[List[np.ndarray]] = None, | |
min_mask_region_area: int = 0, | |
output_mode: str = "binary_mask", | |
use_m2m: bool = False, | |
multimask_output: bool = True, | |
) -> None: | |
""" | |
Using a SAM 2 model, generates masks for the entire image. | |
Generates a grid of point prompts over the image, then filters | |
low quality and duplicate masks. The default settings are chosen | |
for SAM 2 with a HieraL backbone. | |
Arguments: | |
model (Sam): The SAM 2 model to use for mask prediction. | |
points_per_side (int or None): The number of points to be sampled | |
along one side of the image. The total number of points is | |
points_per_side**2. If None, 'point_grids' must provide explicit | |
point sampling. | |
points_per_batch (int): Sets the number of points run simultaneously | |
by the model. Higher numbers may be faster but use more GPU memory. | |
pred_iou_thresh (float): A filtering threshold in [0,1], using the | |
model's predicted mask quality. | |
stability_score_thresh (float): A filtering threshold in [0,1], using | |
the stability of the mask under changes to the cutoff used to binarize | |
the model's mask predictions. | |
stability_score_offset (float): The amount to shift the cutoff when | |
calculated the stability score. | |
mask_threshold (float): Threshold for binarizing the mask logits | |
box_nms_thresh (float): The box IoU cutoff used by non-maximal | |
suppression to filter duplicate masks. | |
crop_n_layers (int): If >0, mask prediction will be run again on | |
crops of the image. Sets the number of layers to run, where each | |
layer has 2**i_layer number of image crops. | |
crop_nms_thresh (float): The box IoU cutoff used by non-maximal | |
suppression to filter duplicate masks between different crops. | |
crop_overlap_ratio (float): Sets the degree to which crops overlap. | |
In the first crop layer, crops will overlap by this fraction of | |
the image length. Later layers with more crops scale down this overlap. | |
crop_n_points_downscale_factor (int): The number of points-per-side | |
sampled in layer n is scaled down by crop_n_points_downscale_factor**n. | |
point_grids (list(np.ndarray) or None): A list over explicit grids | |
of points used for sampling, normalized to [0,1]. The nth grid in the | |
list is used in the nth crop layer. Exclusive with points_per_side. | |
min_mask_region_area (int): If >0, postprocessing will be applied | |
to remove disconnected regions and holes in masks with area smaller | |
than min_mask_region_area. Requires opencv. | |
output_mode (str): The form masks are returned in. Can be 'binary_mask', | |
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools. | |
For large resolutions, 'binary_mask' may consume large amounts of | |
memory. | |
use_m2m (bool): Whether to add a one step refinement using previous mask predictions. | |
multimask_output (bool): Whether to output multimask at each point of the grid. | |
""" | |
assert (points_per_side is None) != ( | |
point_grids is None | |
), "Exactly one of points_per_side or point_grid must be provided." | |
if points_per_side is not None: | |
self.point_grids = build_all_layer_point_grids( | |
points_per_side, | |
crop_n_layers, | |
crop_n_points_downscale_factor, | |
) | |
elif point_grids is not None: | |
self.point_grids = point_grids | |
else: | |
raise ValueError("Can't have both points_per_side and point_grid be None.") | |
assert output_mode in [ | |
"binary_mask", | |
"uncompressed_rle", | |
"coco_rle", | |
], f"Unknown output_mode {output_mode}." | |
if output_mode == "coco_rle": | |
try: | |
from pycocotools import mask as mask_utils # type: ignore # noqa: F401 | |
except ImportError as e: | |
print("Please install pycocotools") | |
raise e | |
self.predictor = SAM2ImagePredictor( | |
model, | |
max_hole_area=min_mask_region_area, | |
max_sprinkle_area=min_mask_region_area, | |
) | |
self.points_per_batch = points_per_batch | |
self.pred_iou_thresh = pred_iou_thresh | |
self.stability_score_thresh = stability_score_thresh | |
self.stability_score_offset = stability_score_offset | |
self.mask_threshold = mask_threshold | |
self.box_nms_thresh = box_nms_thresh | |
self.crop_n_layers = crop_n_layers | |
self.crop_nms_thresh = crop_nms_thresh | |
self.crop_overlap_ratio = crop_overlap_ratio | |
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor | |
self.min_mask_region_area = min_mask_region_area | |
self.output_mode = output_mode | |
self.use_m2m = use_m2m | |
self.multimask_output = multimask_output | |
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]: | |
""" | |
Generates masks for the given image. | |
Arguments: | |
image (np.ndarray): The image to generate masks for, in HWC uint8 format. | |
Returns: | |
list(dict(str, any)): A list over records for masks. Each record is | |
a dict containing the following keys: | |
segmentation (dict(str, any) or np.ndarray): The mask. If | |
output_mode='binary_mask', is an array of shape HW. Otherwise, | |
is a dictionary containing the RLE. | |
bbox (list(float)): The box around the mask, in XYWH format. | |
area (int): The area in pixels of the mask. | |
predicted_iou (float): The model's own prediction of the mask's | |
quality. This is filtered by the pred_iou_thresh parameter. | |
point_coords (list(list(float))): The point coordinates input | |
to the model to generate this mask. | |
stability_score (float): A measure of the mask's quality. This | |
is filtered on using the stability_score_thresh parameter. | |
crop_box (list(float)): The crop of the image used to generate | |
the mask, given in XYWH format. | |
""" | |
# Generate masks | |
mask_data = self._generate_masks(image) | |
# Encode masks | |
if self.output_mode == "coco_rle": | |
mask_data["segmentations"] = [ | |
coco_encode_rle(rle) for rle in mask_data["rles"] | |
] | |
elif self.output_mode == "binary_mask": | |
mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]] | |
else: | |
mask_data["segmentations"] = mask_data["rles"] | |
# Write mask records | |
curr_anns = [] | |
for idx in range(len(mask_data["segmentations"])): | |
ann = { | |
"segmentation": mask_data["segmentations"][idx], | |
"area": area_from_rle(mask_data["rles"][idx]), | |
"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(), | |
"predicted_iou": mask_data["iou_preds"][idx].item(), | |
"point_coords": [mask_data["points"][idx].tolist()], | |
"stability_score": mask_data["stability_score"][idx].item(), | |
"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(), | |
} | |
curr_anns.append(ann) | |
return curr_anns | |
def _generate_masks(self, image: np.ndarray) -> MaskData: | |
orig_size = image.shape[:2] | |
crop_boxes, layer_idxs = generate_crop_boxes( | |
orig_size, self.crop_n_layers, self.crop_overlap_ratio | |
) | |
# Iterate over image crops | |
data = MaskData() | |
for crop_box, layer_idx in zip(crop_boxes, layer_idxs): | |
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size) | |
data.cat(crop_data) | |
# Remove duplicate masks between crops | |
if len(crop_boxes) > 1: | |
# Prefer masks from smaller crops | |
scores = 1 / box_area(data["crop_boxes"]) | |
scores = scores.to(data["boxes"].device) | |
keep_by_nms = batched_nms( | |
data["boxes"].float(), | |
scores, | |
torch.zeros_like(data["boxes"][:, 0]), # categories | |
iou_threshold=self.crop_nms_thresh, | |
) | |
data.filter(keep_by_nms) | |
data.to_numpy() | |
return data | |
def _process_crop( | |
self, | |
image: np.ndarray, | |
crop_box: List[int], | |
crop_layer_idx: int, | |
orig_size: Tuple[int, ...], | |
) -> MaskData: | |
# Crop the image and calculate embeddings | |
x0, y0, x1, y1 = crop_box | |
cropped_im = image[y0:y1, x0:x1, :] | |
cropped_im_size = cropped_im.shape[:2] | |
self.predictor.set_image(cropped_im) | |
# Get points for this crop | |
points_scale = np.array(cropped_im_size)[None, ::-1] | |
points_for_image = self.point_grids[crop_layer_idx] * points_scale | |
# Generate masks for this crop in batches | |
data = MaskData() | |
for (points,) in batch_iterator(self.points_per_batch, points_for_image): | |
batch_data = self._process_batch( | |
points, cropped_im_size, crop_box, orig_size, normalize=True | |
) | |
data.cat(batch_data) | |
del batch_data | |
self.predictor.reset_predictor() | |
# Remove duplicates within this crop. | |
keep_by_nms = batched_nms( | |
data["boxes"].float(), | |
data["iou_preds"], | |
torch.zeros_like(data["boxes"][:, 0]), # categories | |
iou_threshold=self.box_nms_thresh, | |
) | |
data.filter(keep_by_nms) | |
# Return to the original image frame | |
data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box) | |
data["points"] = uncrop_points(data["points"], crop_box) | |
data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))]) | |
return data | |
def _process_batch( | |
self, | |
points: np.ndarray, | |
im_size: Tuple[int, ...], | |
crop_box: List[int], | |
orig_size: Tuple[int, ...], | |
normalize=False, | |
) -> MaskData: | |
orig_h, orig_w = orig_size | |
# Run model on this batch | |
points = torch.as_tensor(points, device=self.predictor.device) | |
in_points = self.predictor._transforms.transform_coords( | |
points, normalize=normalize, orig_hw=im_size | |
) | |
in_labels = torch.ones( | |
in_points.shape[0], dtype=torch.int, device=in_points.device | |
) | |
masks, iou_preds, low_res_masks = self.predictor._predict( | |
in_points[:, None, :], | |
in_labels[:, None], | |
multimask_output=self.multimask_output, | |
return_logits=True, | |
) | |
# Serialize predictions and store in MaskData | |
data = MaskData( | |
masks=masks.flatten(0, 1), | |
iou_preds=iou_preds.flatten(0, 1), | |
points=points.repeat_interleave(masks.shape[1], dim=0), | |
low_res_masks=low_res_masks.flatten(0, 1), | |
) | |
del masks | |
if not self.use_m2m: | |
# Filter by predicted IoU | |
if self.pred_iou_thresh > 0.0: | |
keep_mask = data["iou_preds"] > self.pred_iou_thresh | |
data.filter(keep_mask) | |
# Calculate and filter by stability score | |
data["stability_score"] = calculate_stability_score( | |
data["masks"], self.mask_threshold, self.stability_score_offset | |
) | |
if self.stability_score_thresh > 0.0: | |
keep_mask = data["stability_score"] >= self.stability_score_thresh | |
data.filter(keep_mask) | |
else: | |
# One step refinement using previous mask predictions | |
in_points = self.predictor._transforms.transform_coords( | |
data["points"], normalize=normalize, orig_hw=im_size | |
) | |
labels = torch.ones( | |
in_points.shape[0], dtype=torch.int, device=in_points.device | |
) | |
masks, ious = self.refine_with_m2m( | |
in_points, labels, data["low_res_masks"], self.points_per_batch | |
) | |
data["masks"] = masks.squeeze(1) | |
data["iou_preds"] = ious.squeeze(1) | |
if self.pred_iou_thresh > 0.0: | |
keep_mask = data["iou_preds"] > self.pred_iou_thresh | |
data.filter(keep_mask) | |
data["stability_score"] = calculate_stability_score( | |
data["masks"], self.mask_threshold, self.stability_score_offset | |
) | |
if self.stability_score_thresh > 0.0: | |
keep_mask = data["stability_score"] >= self.stability_score_thresh | |
data.filter(keep_mask) | |
# Threshold masks and calculate boxes | |
data["masks"] = data["masks"] > self.mask_threshold | |
data["boxes"] = batched_mask_to_box(data["masks"]) | |
# Filter boxes that touch crop boundaries | |
keep_mask = ~is_box_near_crop_edge( | |
data["boxes"], crop_box, [0, 0, orig_w, orig_h] | |
) | |
if not torch.all(keep_mask): | |
data.filter(keep_mask) | |
# Compress to RLE | |
data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w) | |
data["rles"] = mask_to_rle_pytorch(data["masks"]) | |
del data["masks"] | |
return data | |
def postprocess_small_regions( | |
mask_data: MaskData, min_area: int, nms_thresh: float | |
) -> MaskData: | |
""" | |
Removes small disconnected regions and holes in masks, then reruns | |
box NMS to remove any new duplicates. | |
Edits mask_data in place. | |
Requires open-cv as a dependency. | |
""" | |
if len(mask_data["rles"]) == 0: | |
return mask_data | |
# Filter small disconnected regions and holes | |
new_masks = [] | |
scores = [] | |
for rle in mask_data["rles"]: | |
mask = rle_to_mask(rle) | |
mask, changed = remove_small_regions(mask, min_area, mode="holes") | |
unchanged = not changed | |
mask, changed = remove_small_regions(mask, min_area, mode="islands") | |
unchanged = unchanged and not changed | |
new_masks.append(torch.as_tensor(mask).unsqueeze(0)) | |
# Give score=0 to changed masks and score=1 to unchanged masks | |
# so NMS will prefer ones that didn't need postprocessing | |
scores.append(float(unchanged)) | |
# Recalculate boxes and remove any new duplicates | |
masks = torch.cat(new_masks, dim=0) | |
boxes = batched_mask_to_box(masks) | |
keep_by_nms = batched_nms( | |
boxes.float(), | |
torch.as_tensor(scores), | |
torch.zeros_like(boxes[:, 0]), # categories | |
iou_threshold=nms_thresh, | |
) | |
# Only recalculate RLEs for masks that have changed | |
for i_mask in keep_by_nms: | |
if scores[i_mask] == 0.0: | |
mask_torch = masks[i_mask].unsqueeze(0) | |
mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0] | |
mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly | |
mask_data.filter(keep_by_nms) | |
return mask_data | |
def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch): | |
new_masks = [] | |
new_iou_preds = [] | |
for cur_points, cur_point_labels, low_res_mask in batch_iterator( | |
points_per_batch, points, point_labels, low_res_masks | |
): | |
best_masks, best_iou_preds, _ = self.predictor._predict( | |
cur_points[:, None, :], | |
cur_point_labels[:, None], | |
mask_input=low_res_mask[:, None, :], | |
multimask_output=False, | |
return_logits=True, | |
) | |
new_masks.append(best_masks) | |
new_iou_preds.append(best_iou_preds) | |
masks = torch.cat(new_masks, dim=0) | |
return masks, torch.cat(new_iou_preds, dim=0) | |