fffiloni's picture
Update app.py
8dcb08c verified
import gradio as gr
import spaces
import os
import sys
import subprocess
import numpy as np
from PIL import Image
import cv2
from huggingface_hub import login
hf_token = os.environ.get("HF_TOKEN_GATED")
login(token=hf_token)
import torch
from diffusers.utils import load_image
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
from diffusers.models.controlnet_flux import FluxControlNetModel
base_model = 'black-forest-labs/FLUX.1-dev'
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha'
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
# pipe.enable_model_cpu_offload()
pipe.to("cuda")
def resize_image(input_path, output_path, target_height):
# Open the input image
img = Image.open(input_path)
# Calculate the aspect ratio of the original image
original_width, original_height = img.size
original_aspect_ratio = original_width / original_height
# Calculate the new width while maintaining the aspect ratio and the target height
new_width = int(target_height * original_aspect_ratio)
# Resize the image while maintaining the aspect ratio and fixing the height
img = img.resize((new_width, target_height), Image.LANCZOS)
# Save the resized image
img.save(output_path)
return output_path, new_width, target_height
@spaces.GPU()
def infer(image_in, prompt, inference_steps, guidance_scale, control_weight, progress=gr.Progress(track_tqdm=True)):
n_prompt = 'NSFW, nude, naked, porn, ugly'
# Canny preprocessing
image_to_canny = load_image(image_in)
image_to_canny = np.array(image_to_canny)
image_to_canny = cv2.Canny(image_to_canny, 100, 200)
image_to_canny = image_to_canny[:, :, None]
image_to_canny = np.concatenate([image_to_canny, image_to_canny, image_to_canny], axis=2)
image_to_canny = Image.fromarray(image_to_canny)
control_image = image_to_canny
# infer
image = pipe(
prompt=prompt,
#negative_prompt=n_prompt,
control_image=control_image,
controlnet_conditioning_scale=control_weight,
num_inference_steps=inference_steps,
guidance_scale=guidance_scale,
).images[0]
image_redim, w, h = resize_image(image_in, "resized_input.jpg", 512)
image = image.resize((w, h), Image.LANCZOS)
return image, gr.update(value=image_to_canny, visible=True)
css="""
#col-container{
margin: 0 auto;
max-width: 1080px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# FLUX.1-dev Controlnet
Experiment with FLUX.1-dev ControlNet Canny model proposed and maintained by the InstantX team.<br />
Model card: [InstantX/FLUX.1-dev-Controlnet-Canny-alpha](https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha)
""")
with gr.Column():
with gr.Row():
with gr.Column():
image_in = gr.Image(label="Image reference", sources=["upload"], type="filepath")
prompt = gr.Textbox(label="Prompt")
with gr.Accordion("Advanced settings", open=False):
with gr.Column():
with gr.Row():
inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=25)
guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=7.0)
control_weight = gr.Slider(label="Control Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.7)
submit_canny_btn = gr.Button("Submit")
with gr.Column():
result = gr.Image(label="Result")
canny_used = gr.Image(label="Preprocessed Canny", visible=False)
submit_canny_btn.click(
fn = infer,
inputs = [image_in, prompt, inference_steps, guidance_scale, control_weight],
outputs = [result, canny_used],
show_api=False
)
demo.queue().launch()