Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import os | |
import sys | |
import subprocess | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
from huggingface_hub import login | |
hf_token = os.environ.get("HF_TOKEN_GATED") | |
login(token=hf_token) | |
import torch | |
from diffusers.utils import load_image | |
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline | |
from diffusers.models.controlnet_flux import FluxControlNetModel | |
base_model = 'black-forest-labs/FLUX.1-dev' | |
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha' | |
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) | |
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16) | |
# pipe.enable_model_cpu_offload() | |
pipe.to("cuda") | |
def resize_image(input_path, output_path, target_height): | |
# Open the input image | |
img = Image.open(input_path) | |
# Calculate the aspect ratio of the original image | |
original_width, original_height = img.size | |
original_aspect_ratio = original_width / original_height | |
# Calculate the new width while maintaining the aspect ratio and the target height | |
new_width = int(target_height * original_aspect_ratio) | |
# Resize the image while maintaining the aspect ratio and fixing the height | |
img = img.resize((new_width, target_height), Image.LANCZOS) | |
# Save the resized image | |
img.save(output_path) | |
return output_path, new_width, target_height | |
def infer(image_in, prompt, inference_steps, guidance_scale, control_weight, progress=gr.Progress(track_tqdm=True)): | |
n_prompt = 'NSFW, nude, naked, porn, ugly' | |
# Canny preprocessing | |
image_to_canny = load_image(image_in) | |
image_to_canny = np.array(image_to_canny) | |
image_to_canny = cv2.Canny(image_to_canny, 100, 200) | |
image_to_canny = image_to_canny[:, :, None] | |
image_to_canny = np.concatenate([image_to_canny, image_to_canny, image_to_canny], axis=2) | |
image_to_canny = Image.fromarray(image_to_canny) | |
control_image = image_to_canny | |
# infer | |
image = pipe( | |
prompt=prompt, | |
#negative_prompt=n_prompt, | |
control_image=control_image, | |
controlnet_conditioning_scale=control_weight, | |
num_inference_steps=inference_steps, | |
guidance_scale=guidance_scale, | |
).images[0] | |
image_redim, w, h = resize_image(image_in, "resized_input.jpg", 512) | |
image = image.resize((w, h), Image.LANCZOS) | |
return image, gr.update(value=image_to_canny, visible=True) | |
css=""" | |
#col-container{ | |
margin: 0 auto; | |
max-width: 1080px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(""" | |
# FLUX.1-dev Controlnet | |
Experiment with FLUX.1-dev ControlNet Canny model proposed and maintained by the InstantX team.<br /> | |
Model card: [InstantX/FLUX.1-dev-Controlnet-Canny-alpha](https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha) | |
""") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
image_in = gr.Image(label="Image reference", sources=["upload"], type="filepath") | |
prompt = gr.Textbox(label="Prompt") | |
with gr.Accordion("Advanced settings", open=False): | |
with gr.Column(): | |
with gr.Row(): | |
inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=25) | |
guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=7.0) | |
control_weight = gr.Slider(label="Control Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.7) | |
submit_canny_btn = gr.Button("Submit") | |
with gr.Column(): | |
result = gr.Image(label="Result") | |
canny_used = gr.Image(label="Preprocessed Canny", visible=False) | |
submit_canny_btn.click( | |
fn = infer, | |
inputs = [image_in, prompt, inference_steps, guidance_scale, control_weight], | |
outputs = [result, canny_used], | |
show_api=False | |
) | |
demo.queue().launch() |