Emanuel's picture
First commit
19d4726
raw
history blame
2.78 kB
import logging
import os
from typing import List, Tuple
import gradio as gr
import pandas as pd
import spacy
from transformers import AutoModelForTokenClassification, AutoTokenizer
try:
nlp = spacy.load("pt_core_news_sm")
except Exception:
os.system("python -m spacy download pt_core_news_sm")
nlp = spacy.load("pt_core_news_sm")
model = AutoModelForTokenClassification.from_pretrained("Emanuel/bertimbau-base-pos")
tokenizer = AutoTokenizer.from_pretrained("Emanuel/bertimbau-base-pos")
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
def predict(text, nlp, logger=None) -> Tuple[List[str], List[str]]:
doc = nlp(text)
tokens = [token.text for token in doc]
logger.info("Starting predictions for sentence: {}".format(text))
input_tokens = tokenizer(
tokens,
return_tensors="pt",
is_split_into_words=True,
return_offsets_mapping=True,
return_special_tokens_mask=True,
)
output = model(input_tokens["input_ids"])
i_token = 0
labels = []
for off, is_special_token, pred in zip(
input_tokens["offset_mapping"][0],
input_tokens["special_tokens_mask"][0],
output.logits[0],
):
if is_special_token or off[0] > 0:
continue
label = model.config.__dict__["id2label"][int(pred.argmax(axis=-1))]
if logger is not None:
logger.info("{}, {}, {}".format(off, tokens[i_token], label))
labels.append(label)
i_token += 1
return tokens, labels
def text_analysis(text):
tokens, labels = predict(text, nlp, logger)
pos_count = pd.DataFrame(
{
"token": tokens,
"etiqueta": labels,
}
)
pos_tokens = []
for token, label in zip(tokens, labels):
pos_tokens.extend([(token, label), (" ", None)])
return pos_tokens, pos_count
css = open("style.css").read()
top_html = open("top.html").read()
bottom_html = open("bottom.html").read()
with gr.Blocks(css=css) as demo:
gr.HTML(top_html)
text = gr.Textbox(placeholder="Insira um texto...", label="Texto de entrada")
output_highlighted = gr.HighlightedText()
output_df = gr.Dataframe()
submit_btn = gr.Button("Enviar")
submit_btn.click(
fn=text_analysis, inputs=text, outputs=[output_highlighted, output_df]
)
examples = gr.Examples(
examples=[
[
"A população não poderia ter acesso a relatórios que explicassem, por exemplo, os motivos exatos de atrasos em obras de linhas e estações."
],
["Filme 'Star Wars : Os Últimos Jedi' ganha trailer definitivo; assista."],
],
inputs=[text],
label="Exemplos",
)
gr.HTML(bottom_html)
demo.launch()