Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
from PIFuHD.data import EvalWMetaDataset | |
from PIFuHD.data.ImageBundle import ImageBundle | |
from PIFuHD.options import BaseOptions | |
from PIFuHD.recontructor import Reconstructor | |
from huggingface_hub import hf_hub_download | |
from human_pose_estimator import PoseEstimator | |
from estimator import rect | |
REPO_ID = "cxeep/PIFuHD" | |
pose_estimator = PoseEstimator("cpu") | |
checkpoint_path = hf_hub_download(repo_id=REPO_ID, filename="pifuhd.pt") | |
cmd = [ | |
'--dataroot', './data', | |
'--results_path', './results', | |
'--loadSize', '1024', | |
'--resolution', '256', | |
'--load_netMR_checkpoint_path', checkpoint_path, | |
'--start_id', '-1', | |
'--end_id', '-1' | |
] | |
parser = BaseOptions() | |
opts = parser.parse(cmd) | |
reconstructor = Reconstructor(opts) | |
def make_bundle(image, name): | |
image, rects = rect(pose_estimator, image) | |
return ImageBundle(img=image, name=name, meta=rects) | |
def predict(img: np.ndarray): | |
bundle = make_bundle(img, "Model3D") | |
dataset = EvalWMetaDataset(opts, [bundle]) | |
img, model = reconstructor.evaluate(dataset) | |
return img, model, model | |
footer = r""" | |
<center> | |
<b> | |
Demo for <a href='https://github.com/facebookresearch/pifuhd'>PIFuHD</a> | |
</b> | |
</center> | |
""" | |
with gr.Blocks(title="PIFuHD") as app: | |
gr.HTML("<center><h1>3D Human Digitization</h1></center>") | |
gr.HTML("<center><h3>PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020)</h3></center>") | |
with gr.Row(equal_height=False): | |
with gr.Column(): | |
input_img = gr.Image(type="numpy", label="Input image") | |
run_btn = gr.Button(variant="primary") | |
with gr.Column(): | |
output_obj = gr.Model3D(label="Output model") | |
output_img = gr.Image(type="filepath", label="Output image") | |
output_file = gr.File(label="Download 3D Model") | |
gr.ClearButton(components=[input_img, output_img, output_obj, output_file], variant="stop") | |
run_btn.click(predict, [input_img], [output_img, output_obj, output_file]) | |
with gr.Row(): | |
blobs = [[f"examples/{x:02d}.png"] for x in range(1, 4)] | |
examples = gr.Dataset(components=[input_img], samples=blobs) | |
examples.click(lambda x: x[0], [examples], [input_img]) | |
with gr.Row(): | |
gr.HTML(footer) | |
app.launch(share=False, debug=True, show_error=True) | |
app.queue() | |