StyleNeRF / viz /renderer.py
Jiatao Gu
add code from the original repo
94ada0b
raw
history blame
17.2 kB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import sys
import copy
import traceback
import numpy as np
import torch
import torch.fft
import torch.nn
import matplotlib.cm
import dnnlib
import torch.nn.functional as F
from torch_utils import misc
from torch_utils.ops import upfirdn2d
from training.networks import Generator
import legacy # pylint: disable=import-error
#----------------------------------------------------------------------------
class CapturedException(Exception):
def __init__(self, msg=None):
if msg is None:
_type, value, _traceback = sys.exc_info()
assert value is not None
if isinstance(value, CapturedException):
msg = str(value)
else:
msg = traceback.format_exc()
assert isinstance(msg, str)
super().__init__(msg)
#----------------------------------------------------------------------------
class CaptureSuccess(Exception):
def __init__(self, out):
super().__init__()
self.out = out
#----------------------------------------------------------------------------
def _sinc(x):
y = (x * np.pi).abs()
z = torch.sin(y) / y.clamp(1e-30, float('inf'))
return torch.where(y < 1e-30, torch.ones_like(x), z)
def _lanczos_window(x, a):
x = x.abs() / a
return torch.where(x < 1, _sinc(x), torch.zeros_like(x))
#----------------------------------------------------------------------------
def _construct_affine_bandlimit_filter(mat, a=3, amax=16, aflt=64, up=4, cutoff_in=1, cutoff_out=1):
assert a <= amax < aflt
mat = torch.as_tensor(mat).to(torch.float32)
# Construct 2D filter taps in input & output coordinate spaces.
taps = ((torch.arange(aflt * up * 2 - 1, device=mat.device) + 1) / up - aflt).roll(1 - aflt * up)
yi, xi = torch.meshgrid(taps, taps)
xo, yo = (torch.stack([xi, yi], dim=2) @ mat[:2, :2].t()).unbind(2)
# Convolution of two oriented 2D sinc filters.
fi = _sinc(xi * cutoff_in) * _sinc(yi * cutoff_in)
fo = _sinc(xo * cutoff_out) * _sinc(yo * cutoff_out)
f = torch.fft.ifftn(torch.fft.fftn(fi) * torch.fft.fftn(fo)).real
# Convolution of two oriented 2D Lanczos windows.
wi = _lanczos_window(xi, a) * _lanczos_window(yi, a)
wo = _lanczos_window(xo, a) * _lanczos_window(yo, a)
w = torch.fft.ifftn(torch.fft.fftn(wi) * torch.fft.fftn(wo)).real
# Construct windowed FIR filter.
f = f * w
# Finalize.
c = (aflt - amax) * up
f = f.roll([aflt * up - 1] * 2, dims=[0,1])[c:-c, c:-c]
f = torch.nn.functional.pad(f, [0, 1, 0, 1]).reshape(amax * 2, up, amax * 2, up)
f = f / f.sum([0,2], keepdim=True) / (up ** 2)
f = f.reshape(amax * 2 * up, amax * 2 * up)[:-1, :-1]
return f
#----------------------------------------------------------------------------
def _apply_affine_transformation(x, mat, up=4, **filter_kwargs):
_N, _C, H, W = x.shape
mat = torch.as_tensor(mat).to(dtype=torch.float32, device=x.device)
# Construct filter.
f = _construct_affine_bandlimit_filter(mat, up=up, **filter_kwargs)
assert f.ndim == 2 and f.shape[0] == f.shape[1] and f.shape[0] % 2 == 1
p = f.shape[0] // 2
# Construct sampling grid.
theta = mat.inverse()
theta[:2, 2] *= 2
theta[0, 2] += 1 / up / W
theta[1, 2] += 1 / up / H
theta[0, :] *= W / (W + p / up * 2)
theta[1, :] *= H / (H + p / up * 2)
theta = theta[:2, :3].unsqueeze(0).repeat([x.shape[0], 1, 1])
g = torch.nn.functional.affine_grid(theta, x.shape, align_corners=False)
# Resample image.
y = upfirdn2d.upsample2d(x=x, f=f, up=up, padding=p)
z = torch.nn.functional.grid_sample(y, g, mode='bilinear', padding_mode='zeros', align_corners=False)
# Form mask.
m = torch.zeros_like(y)
c = p * 2 + 1
m[:, :, c:-c, c:-c] = 1
m = torch.nn.functional.grid_sample(m, g, mode='nearest', padding_mode='zeros', align_corners=False)
return z, m
#----------------------------------------------------------------------------
def set_random_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
class Renderer:
def __init__(self):
self._device = torch.device('cuda')
self._pkl_data = dict() # {pkl: dict | CapturedException, ...}
self._networks = dict() # {cache_key: torch.nn.Module, ...}
self._pinned_bufs = dict() # {(shape, dtype): torch.Tensor, ...}
self._cmaps = dict() # {name: torch.Tensor, ...}
self._is_timing = False
self._start_event = torch.cuda.Event(enable_timing=True)
self._end_event = torch.cuda.Event(enable_timing=True)
self._net_layers = dict() # {cache_key: [dnnlib.EasyDict, ...], ...}
def render(self, **args):
self._is_timing = True
self._start_event.record(torch.cuda.current_stream(self._device))
res = dnnlib.EasyDict()
try:
self._render_impl(res, **args)
except:
res.error = CapturedException()
self._end_event.record(torch.cuda.current_stream(self._device))
if 'error' in res:
res.error = str(res.error)
if self._is_timing:
self._end_event.synchronize()
res.render_time = self._start_event.elapsed_time(self._end_event) * 1e-3
self._is_timing = False
return res
def get_network(self, pkl, key, **tweak_kwargs):
data = self._pkl_data.get(pkl, None)
if data is None:
print(f'Loading "{pkl}"... ', end='', flush=True)
try:
with dnnlib.util.open_url(pkl, verbose=False) as f:
data = legacy.load_network_pkl(f)
print('Done.')
except:
data = CapturedException()
print('Failed!')
self._pkl_data[pkl] = data
self._ignore_timing()
if isinstance(data, CapturedException):
raise data
orig_net = data[key]
cache_key = (orig_net, self._device, tuple(sorted(tweak_kwargs.items())))
net = self._networks.get(cache_key, None)
if net is None:
try:
net = copy.deepcopy(orig_net)
net = self._tweak_network(net, **tweak_kwargs)
net.to(self._device)
except:
net = CapturedException()
self._networks[cache_key] = net
self._ignore_timing()
if isinstance(net, CapturedException):
raise net
return net
def get_camera_traj(self, gen, pitch, yaw, fov=12, batch_size=1, model_name='FFHQ512'):
range_u, range_v = gen.C.range_u, gen.C.range_v
if not (('car' in model_name) or ('Car' in model_name)): # TODO: hack, better option?
yaw, pitch = 0.5 * yaw, 0.3 * pitch
pitch = pitch + np.pi/2
u = (yaw - range_u[0]) / (range_u[1] - range_u[0])
v = (pitch - range_v[0]) / (range_v[1] - range_v[0])
else:
u = (yaw + 1) / 2
v = (pitch + 1) / 2
cam = gen.get_camera(batch_size=batch_size, mode=[u, v, 0.5], device=self._device, fov=fov)
return cam
def _tweak_network(self, net):
# Print diagnostics.
#for name, value in misc.named_params_and_buffers(net):
# if name.endswith('.magnitude_ema'):
# value = value.rsqrt().numpy()
# print(f'{name:<50s}{np.min(value):<16g}{np.max(value):g}')
# if name.endswith('.weight') and value.ndim == 4:
# value = value.square().mean([1,2,3]).sqrt().numpy()
# print(f'{name:<50s}{np.min(value):<16g}{np.max(value):g}')
return net
def _get_pinned_buf(self, ref):
key = (tuple(ref.shape), ref.dtype)
buf = self._pinned_bufs.get(key, None)
if buf is None:
buf = torch.empty(ref.shape, dtype=ref.dtype).pin_memory()
self._pinned_bufs[key] = buf
return buf
def to_device(self, buf):
return self._get_pinned_buf(buf).copy_(buf).to(self._device)
def to_cpu(self, buf):
return self._get_pinned_buf(buf).copy_(buf).clone()
def _ignore_timing(self):
self._is_timing = False
def _apply_cmap(self, x, name='viridis'):
cmap = self._cmaps.get(name, None)
if cmap is None:
cmap = matplotlib.cm.get_cmap(name)
cmap = cmap(np.linspace(0, 1, num=1024), bytes=True)[:, :3]
cmap = self.to_device(torch.from_numpy(cmap))
self._cmaps[name] = cmap
hi = cmap.shape[0] - 1
x = (x * hi + 0.5).clamp(0, hi).to(torch.int64)
x = torch.nn.functional.embedding(x, cmap)
return x
@torch.no_grad()
def _render_impl(self, res,
pkl = None,
w0_seeds = [[0, 1]],
stylemix_idx = [],
stylemix_seed = 0,
trunc_psi = 1,
trunc_cutoff = 0,
random_seed = 0,
noise_mode = 'const',
force_fp32 = False,
layer_name = None,
sel_channels = 3,
base_channel = 0,
img_scale_db = 0,
img_normalize = False,
fft_show = False,
fft_all = True,
fft_range_db = 50,
fft_beta = 8,
input_transform = None,
untransform = False,
camera = None,
output_lowres = False,
**unused,
):
# Dig up network details.
_G = self.get_network(pkl, 'G_ema')
try:
G = Generator(*_G.init_args, **_G.init_kwargs).to(self._device)
misc.copy_params_and_buffers(_G, G, require_all=False)
except Exception:
G = _G
G.eval()
res.img_resolution = G.img_resolution
res.num_ws = G.num_ws
res.has_noise = any('noise_const' in name for name, _buf in G.synthesis.named_buffers())
res.has_input_transform = (hasattr(G.synthesis, 'input') and hasattr(G.synthesis.input, 'transform'))
# Set input transform.
if res.has_input_transform:
m = np.eye(3)
try:
if input_transform is not None:
m = np.linalg.inv(np.asarray(input_transform))
except np.linalg.LinAlgError:
res.error = CapturedException()
G.synthesis.input.transform.copy_(torch.from_numpy(m))
# Generate random latents.
all_seeds = [seed for seed, _weight in w0_seeds] + [stylemix_seed]
all_seeds = list(set(all_seeds))
all_zs = np.zeros([len(all_seeds), G.z_dim], dtype=np.float32)
all_cs = np.zeros([len(all_seeds), G.c_dim], dtype=np.float32)
for idx, seed in enumerate(all_seeds):
rnd = np.random.RandomState(seed)
all_zs[idx] = rnd.randn(G.z_dim)
if G.c_dim > 0:
all_cs[idx, rnd.randint(G.c_dim)] = 1
# Run mapping network.
w_avg = G.mapping.w_avg
all_zs = self.to_device(torch.from_numpy(all_zs))
all_cs = self.to_device(torch.from_numpy(all_cs))
all_ws = G.mapping(z=all_zs, c=all_cs, truncation_psi=trunc_psi, truncation_cutoff=trunc_cutoff) - w_avg
all_ws = dict(zip(all_seeds, all_ws))
# Calculate final W.
w = torch.stack([all_ws[seed] * weight for seed, weight in w0_seeds]).sum(dim=0, keepdim=True)
stylemix_idx = [idx for idx in stylemix_idx if 0 <= idx < G.num_ws]
if len(stylemix_idx) > 0:
w[:, stylemix_idx] = all_ws[stylemix_seed][np.newaxis, stylemix_idx]
w += w_avg
# Run synthesis network.
synthesis_kwargs = dnnlib.EasyDict(noise_mode=noise_mode, force_fp32=force_fp32)
set_random_seed(random_seed)
if hasattr(G.synthesis, 'C'):
synthesis_kwargs.update({'camera_matrices': camera})
out, out_lowres, layers = self.run_synthesis_net(G.synthesis, w, capture_layer=layer_name, **synthesis_kwargs)
# Update layer list.
cache_key = (G.synthesis, tuple(sorted(synthesis_kwargs.items())))
if cache_key not in self._net_layers:
self._net_layers = dict()
if layer_name is not None:
torch.manual_seed(random_seed)
_out, _out2, layers = self.run_synthesis_net(G.synthesis, w, **synthesis_kwargs)
self._net_layers[cache_key] = layers
res.layers = self._net_layers[cache_key]
# Untransform.
if untransform and res.has_input_transform:
out, _mask = _apply_affine_transformation(out.to(torch.float32), G.synthesis.input.transform, amax=6) # Override amax to hit the fast path in upfirdn2d.
# Select channels and compute statistics.
if output_lowres and out_lowres is not None:
out = torch.cat([out, F.interpolate(out_lowres, out.size(-1), mode='nearest')], -1)
out = out[0].to(torch.float32)
if sel_channels > out.shape[0]:
sel_channels = 1
base_channel = max(min(base_channel, out.shape[0] - sel_channels), 0)
sel = out[base_channel : base_channel + sel_channels]
res.stats = torch.stack([
out.mean(), sel.mean(),
out.std(), sel.std(),
out.norm(float('inf')), sel.norm(float('inf')),
])
res.stats = self.to_cpu(res.stats).numpy() # move to cpu
# Scale and convert to uint8.
img = sel
if img_normalize:
img = img / img.norm(float('inf'), dim=[1,2], keepdim=True).clip(1e-8, 1e8)
img = img * (10 ** (img_scale_db / 20))
img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8).permute(1, 2, 0)
res.image = img
# FFT.
if fft_show:
sig = out if fft_all else sel
sig = sig.to(torch.float32)
sig = sig - sig.mean(dim=[1,2], keepdim=True)
sig = sig * torch.kaiser_window(sig.shape[1], periodic=False, beta=fft_beta, device=self._device)[None, :, None]
sig = sig * torch.kaiser_window(sig.shape[2], periodic=False, beta=fft_beta, device=self._device)[None, None, :]
fft = torch.fft.fftn(sig, dim=[1,2]).abs().square().sum(dim=0)
fft = fft.roll(shifts=[fft.shape[0] // 2, fft.shape[1] // 2], dims=[0,1])
fft = (fft / fft.mean()).log10() * 10 # dB
fft = self._apply_cmap((fft / fft_range_db + 1) / 2)
res.image = torch.cat([img.expand_as(fft), fft], dim=1)
res.image = self.to_cpu(res.image).numpy() # move to cpu
def run_synthesis_net(self, net, *args, capture_layer=None, **kwargs): # => out, layers
submodule_names = {mod: name for name, mod in net.named_modules()}
unique_names = set()
layers = []
def module_hook(module, _inputs, outputs):
outputs = list(outputs) if isinstance(outputs, (tuple, list)) else [outputs]
outputs = [out for out in outputs if isinstance(out, torch.Tensor) and out.ndim in [4, 5]]
for idx, out in enumerate(outputs):
if out.ndim == 5: # G-CNN => remove group dimension.
out = out.mean(2)
name = submodule_names[module]
if name == '':
name = 'output'
if len(outputs) > 1:
name += f':{idx}'
if name in unique_names:
suffix = 2
while f'{name}_{suffix}' in unique_names:
suffix += 1
name += f'_{suffix}'
unique_names.add(name)
shape = [int(x) for x in out.shape]
dtype = str(out.dtype).split('.')[-1]
layers.append(dnnlib.EasyDict(name=name, shape=shape, dtype=dtype))
if name == capture_layer:
raise CaptureSuccess(out)
hooks = []
hooks = [module.register_forward_hook(module_hook) for module in net.modules()]
try:
if 'camera_matrices' in kwargs:
kwargs['camera_matrices'] = self.get_camera_traj(net, *kwargs['camera_matrices'])
out = net(*args, **kwargs)
out_lowres = None
if isinstance(out, dict):
if 'img_nerf' in out:
out_lowres = out['img_nerf']
out = out['img']
except CaptureSuccess as e:
out = e.out
out_lowres = None
for hook in hooks:
hook.remove()
return out, out_lowres, layers
#----------------------------------------------------------------------------