Spaces:
Build error
Build error
File size: 25,027 Bytes
94ada0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import numpy as np
from numpy.lib.function_base import angle
import torch
import torch.nn.functional as F
import math
from scipy.spatial.transform import Rotation as Rot
HUGE_NUMBER = 1e10
TINY_NUMBER = 1e-6 # float32 only has 7 decimal digits precision
def get_camera_mat(fov=49.13, invert=True):
# fov = 2 * arctan(sensor / (2 * focal))
# focal = (sensor / 2) * 1 / (tan(0.5 * fov))
# in our case, sensor = 2 as pixels are in [-1, 1]
focal = 1. / np.tan(0.5 * fov * np.pi/180.)
focal = focal.astype(np.float32)
mat = torch.tensor([
[focal, 0., 0., 0.],
[0., focal, 0., 0.],
[0., 0., 1, 0.],
[0., 0., 0., 1.]
]).reshape(1, 4, 4)
if invert:
mat = torch.inverse(mat)
return mat
def get_random_pose(range_u, range_v, range_radius, batch_size=32,
invert=False, gaussian=False, angular=False):
loc, (u, v) = sample_on_sphere(range_u, range_v, size=(batch_size), gaussian=gaussian, angular=angular)
radius = range_radius[0] + torch.rand(batch_size) * (range_radius[1] - range_radius[0])
loc = loc * radius.unsqueeze(-1)
R = look_at(loc)
RT = torch.eye(4).reshape(1, 4, 4).repeat(batch_size, 1, 1)
RT[:, :3, :3] = R
RT[:, :3, -1] = loc
if invert:
RT = torch.inverse(RT)
def N(a, range_a):
if range_a[0] == range_a[1]:
return a * 0
return (a - range_a[0]) / (range_a[1] - range_a[0])
val_u, val_v, val_r = N(u, range_u), N(v, range_v), N(radius, range_radius)
return RT, (val_u, val_v, val_r)
def get_camera_pose(range_u, range_v, range_r, val_u=0.5, val_v=0.5, val_r=0.5,
batch_size=32, invert=False, gaussian=False, angular=False):
r0, rr = range_r[0], range_r[1] - range_r[0]
r = r0 + val_r * rr
if not gaussian:
u0, ur = range_u[0], range_u[1] - range_u[0]
v0, vr = range_v[0], range_v[1] - range_v[0]
u = u0 + val_u * ur
v = v0 + val_v * vr
else:
mean_u, mean_v = sum(range_u) / 2, sum(range_v) / 2
vu, vv = mean_u - range_u[0], mean_v - range_v[0]
u = mean_u + vu * val_u
v = mean_v + vv * val_v
loc, _ = sample_on_sphere((u, u), (v, v), size=(batch_size), angular=angular)
radius = torch.ones(batch_size) * r
loc = loc * radius.unsqueeze(-1)
R = look_at(loc)
RT = torch.eye(4).reshape(1, 4, 4).repeat(batch_size, 1, 1)
RT[:, :3, :3] = R
RT[:, :3, -1] = loc
if invert:
RT = torch.inverse(RT)
return RT
def get_camera_pose_v2(range_u, range_v, range_r, mode, invert=False, gaussian=False, angular=False):
r0, rr = range_r[0], range_r[1] - range_r[0]
val_u, val_v = mode[:,0], mode[:,1]
val_r = torch.ones_like(val_u) * 0.5
if not gaussian:
u0, ur = range_u[0], range_u[1] - range_u[0]
v0, vr = range_v[0], range_v[1] - range_v[0]
u = u0 + val_u * ur
v = v0 + val_v * vr
else:
mean_u, mean_v = sum(range_u) / 2, sum(range_v) / 2
vu, vv = mean_u - range_u[0], mean_v - range_v[0]
u = mean_u + vu * val_u
v = mean_v + vv * val_v
loc = to_sphere(u, v, angular)
radius = r0 + val_r * rr
loc = loc * radius.unsqueeze(-1)
R = look_at(loc)
RT = torch.eye(4).to(R.device).reshape(1, 4, 4).repeat(R.size(0), 1, 1)
RT[:, :3, :3] = R
RT[:, :3, -1] = loc
if invert:
RT = torch.inverse(RT)
return RT, (val_u, val_v, val_r)
def to_sphere(u, v, angular=False):
T = torch if isinstance(u, torch.Tensor) else np
if not angular:
theta = 2 * math.pi * u
phi = T.arccos(1 - 2 * v)
else:
theta, phi = u, v
cx = T.sin(phi) * T.cos(theta)
cy = T.sin(phi) * T.sin(theta)
cz = T.cos(phi)
return T.stack([cx, cy, cz], -1)
def sample_on_sphere(range_u=(0, 1), range_v=(0, 1), size=(1,),
to_pytorch=True, gaussian=False, angular=False):
if not gaussian:
u = np.random.uniform(*range_u, size=size)
v = np.random.uniform(*range_v, size=size)
else:
mean_u, mean_v = sum(range_u) / 2, sum(range_v) / 2
var_u, var_v = mean_u - range_u[0], mean_v - range_v[0]
u = np.random.normal(size=size) * var_u + mean_u
v = np.random.normal(size=size) * var_v + mean_v
sample = to_sphere(u, v, angular)
if to_pytorch:
sample = torch.tensor(sample).float()
u, v = torch.tensor(u).float(), torch.tensor(v).float()
return sample, (u, v)
def look_at(eye, at=np.array([0, 0, 0]), up=np.array([0, 0, 1]), eps=1e-5,
to_pytorch=True):
if not isinstance(eye, torch.Tensor):
# this is the original code from GRAF
at = at.astype(float).reshape(1, 3)
up = up.astype(float).reshape(1, 3)
eye = eye.reshape(-1, 3)
up = up.repeat(eye.shape[0] // up.shape[0], axis=0)
eps = np.array([eps]).reshape(1, 1).repeat(up.shape[0], axis=0)
z_axis = eye - at
z_axis /= np.max(np.stack([np.linalg.norm(z_axis,
axis=1, keepdims=True), eps]))
x_axis = np.cross(up, z_axis)
x_axis /= np.max(np.stack([np.linalg.norm(x_axis,
axis=1, keepdims=True), eps]))
y_axis = np.cross(z_axis, x_axis)
y_axis /= np.max(np.stack([np.linalg.norm(y_axis,
axis=1, keepdims=True), eps]))
r_mat = np.concatenate(
(x_axis.reshape(-1, 3, 1), y_axis.reshape(-1, 3, 1), z_axis.reshape(
-1, 3, 1)), axis=2)
if to_pytorch:
r_mat = torch.tensor(r_mat).float()
else:
def normalize(x, axis=-1, order=2):
l2 = x.norm(p=order, dim=axis, keepdim=True).clamp(min=1e-8)
return x / l2
at, up = torch.from_numpy(at).float().to(eye.device), torch.from_numpy(up).float().to(eye.device)
z_axis = normalize(eye - at[None, :])
x_axis = normalize(torch.cross(up[None,:].expand_as(z_axis), z_axis, dim=-1))
y_axis = normalize(torch.cross(z_axis, x_axis, dim=-1))
r_mat = torch.stack([x_axis, y_axis, z_axis], dim=-1)
return r_mat
def get_rotation_matrix(axis='z', value=0., batch_size=32):
r = Rot.from_euler(axis, value * 2 * np.pi).as_dcm()
r = torch.from_numpy(r).reshape(1, 3, 3).repeat(batch_size, 1, 1)
return r
def get_corner_rays(corner_pixels, camera_matrices, res):
assert (res + 1) * (res + 1) == corner_pixels.size(1)
batch_size = camera_matrices[0].size(0)
rays, origins, _ = get_camera_rays(camera_matrices, corner_pixels)
corner_rays = torch.cat([rays, torch.cross(origins, rays, dim=-1)], -1)
corner_rays = corner_rays.reshape(batch_size, res+1, res+1, 6).permute(0,3,1,2)
corner_rays = torch.cat([corner_rays[..., :-1, :-1], corner_rays[..., 1:, :-1], corner_rays[..., 1:, 1:], corner_rays[..., :-1, 1:]], 1)
return corner_rays
def arange_pixels(
resolution=(128, 128),
batch_size=1,
subsample_to=None,
invert_y_axis=False,
margin=0,
corner_aligned=True,
jitter=None
):
''' Arranges pixels for given resolution in range image_range.
The function returns the unscaled pixel locations as integers and the
scaled float values.
Args:
resolution (tuple): image resolution
batch_size (int): batch size
subsample_to (int): if integer and > 0, the points are randomly
subsampled to this value
'''
h, w = resolution
n_points = resolution[0] * resolution[1]
uh = 1 if corner_aligned else 1 - (1 / h)
uw = 1 if corner_aligned else 1 - (1 / w)
if margin > 0:
uh = uh + (2 / h) * margin
uw = uw + (2 / w) * margin
w, h = w + margin * 2, h + margin * 2
x, y = torch.linspace(-uw, uw, w), torch.linspace(-uh, uh, h)
if jitter is not None:
dx = (torch.ones_like(x).uniform_() - 0.5) * 2 / w * jitter
dy = (torch.ones_like(y).uniform_() - 0.5) * 2 / h * jitter
x, y = x + dx, y + dy
x, y = torch.meshgrid(x, y)
pixel_scaled = torch.stack([x, y], -1).permute(1,0,2).reshape(1, -1, 2).repeat(batch_size, 1, 1)
# Subsample points if subsample_to is not None and > 0
if (subsample_to is not None and subsample_to > 0 and subsample_to < n_points):
idx = np.random.choice(pixel_scaled.shape[1], size=(subsample_to,),
replace=False)
pixel_scaled = pixel_scaled[:, idx]
if invert_y_axis:
pixel_scaled[..., -1] *= -1.
return pixel_scaled
def to_pytorch(tensor, return_type=False):
''' Converts input tensor to pytorch.
Args:
tensor (tensor): Numpy or Pytorch tensor
return_type (bool): whether to return input type
'''
is_numpy = False
if type(tensor) == np.ndarray:
tensor = torch.from_numpy(tensor)
is_numpy = True
tensor = tensor.clone()
if return_type:
return tensor, is_numpy
return tensor
def transform_to_world(pixels, depth, camera_mat, world_mat, scale_mat=None,
invert=True, use_absolute_depth=True):
''' Transforms pixel positions p with given depth value d to world coordinates.
Args:
pixels (tensor): pixel tensor of size B x N x 2
depth (tensor): depth tensor of size B x N x 1
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
invert (bool): whether to invert matrices (default: true)
'''
assert(pixels.shape[-1] == 2)
if scale_mat is None:
scale_mat = torch.eye(4).unsqueeze(0).repeat(
camera_mat.shape[0], 1, 1).to(camera_mat.device)
# Convert to pytorch
pixels, is_numpy = to_pytorch(pixels, True)
depth = to_pytorch(depth)
camera_mat = to_pytorch(camera_mat)
world_mat = to_pytorch(world_mat)
scale_mat = to_pytorch(scale_mat)
# Invert camera matrices
if invert:
camera_mat = torch.inverse(camera_mat)
world_mat = torch.inverse(world_mat)
scale_mat = torch.inverse(scale_mat)
# Transform pixels to homogen coordinates
pixels = pixels.permute(0, 2, 1)
pixels = torch.cat([pixels, torch.ones_like(pixels)], dim=1)
# Project pixels into camera space
if use_absolute_depth:
pixels[:, :2] = pixels[:, :2] * depth.permute(0, 2, 1).abs()
pixels[:, 2:3] = pixels[:, 2:3] * depth.permute(0, 2, 1)
else:
pixels[:, :3] = pixels[:, :3] * depth.permute(0, 2, 1)
# Transform pixels to world space
p_world = scale_mat @ world_mat @ camera_mat @ pixels
# Transform p_world back to 3D coordinates
p_world = p_world[:, :3].permute(0, 2, 1)
if is_numpy:
p_world = p_world.numpy()
return p_world
def transform_to_camera_space(p_world, world_mat, camera_mat=None, scale_mat=None):
''' Transforms world points to camera space.
Args:
p_world (tensor): world points tensor of size B x N x 3
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
'''
batch_size, n_p, _ = p_world.shape
device = p_world.device
# Transform world points to homogen coordinates
p_world = torch.cat([p_world, torch.ones(
batch_size, n_p, 1).to(device)], dim=-1).permute(0, 2, 1)
# Apply matrices to transform p_world to camera space
if scale_mat is None:
if camera_mat is None:
p_cam = world_mat @ p_world
else:
p_cam = camera_mat @ world_mat @ p_world
else:
p_cam = camera_mat @ world_mat @ scale_mat @ p_world
# Transform points back to 3D coordinates
p_cam = p_cam[:, :3].permute(0, 2, 1)
return p_cam
def origin_to_world(n_points, camera_mat, world_mat, scale_mat=None,
invert=False):
''' Transforms origin (camera location) to world coordinates.
Args:
n_points (int): how often the transformed origin is repeated in the
form (batch_size, n_points, 3)
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
invert (bool): whether to invert the matrices (default: true)
'''
batch_size = camera_mat.shape[0]
device = camera_mat.device
# Create origin in homogen coordinates
p = torch.zeros(batch_size, 4, n_points).to(device)
p[:, -1] = 1.
if scale_mat is None:
scale_mat = torch.eye(4).unsqueeze(
0).repeat(batch_size, 1, 1).to(device)
# Invert matrices
if invert:
camera_mat = torch.inverse(camera_mat)
world_mat = torch.inverse(world_mat)
scale_mat = torch.inverse(scale_mat)
# Apply transformation
p_world = scale_mat @ world_mat @ camera_mat @ p
# Transform points back to 3D coordinates
p_world = p_world[:, :3].permute(0, 2, 1)
return p_world
def image_points_to_world(image_points, camera_mat, world_mat, scale_mat=None,
invert=False, negative_depth=True):
''' Transforms points on image plane to world coordinates.
In contrast to transform_to_world, no depth value is needed as points on
the image plane have a fixed depth of 1.
Args:
image_points (tensor): image points tensor of size B x N x 2
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
invert (bool): whether to invert matrices
'''
batch_size, n_pts, dim = image_points.shape
assert(dim == 2)
device = image_points.device
d_image = torch.ones(batch_size, n_pts, 1).to(device)
if negative_depth:
d_image *= -1.
return transform_to_world(image_points, d_image, camera_mat, world_mat,
scale_mat, invert=invert)
def image_points_to_camera(image_points, camera_mat,
invert=False, negative_depth=True, use_absolute_depth=True):
batch_size, n_pts, dim = image_points.shape
assert(dim == 2)
device = image_points.device
d_image = torch.ones(batch_size, n_pts, 1).to(device)
if negative_depth:
d_image *= -1.
# Convert to pytorch
pixels, is_numpy = to_pytorch(image_points, True)
depth = to_pytorch(d_image)
camera_mat = to_pytorch(camera_mat)
# Invert camera matrices
if invert:
camera_mat = torch.inverse(camera_mat)
# Transform pixels to homogen coordinates
pixels = pixels.permute(0, 2, 1)
pixels = torch.cat([pixels, torch.ones_like(pixels)], dim=1)
# Project pixels into camera space
if use_absolute_depth:
pixels[:, :2] = pixels[:, :2] * depth.permute(0, 2, 1).abs()
pixels[:, 2:3] = pixels[:, 2:3] * depth.permute(0, 2, 1)
else:
pixels[:, :3] = pixels[:, :3] * depth.permute(0, 2, 1)
# Transform pixels to world space
p_camera = camera_mat @ pixels
# Transform p_world back to 3D coordinates
p_camera = p_camera[:, :3].permute(0, 2, 1)
if is_numpy:
p_camera = p_camera.numpy()
return p_camera
def camera_points_to_image(camera_points, camera_mat,
invert=False, negative_depth=True, use_absolute_depth=True):
batch_size, n_pts, dim = camera_points.shape
assert(dim == 3)
device = camera_points.device
# Convert to pytorch
p_camera, is_numpy = to_pytorch(camera_points, True)
camera_mat = to_pytorch(camera_mat)
# Invert camera matrices
if invert:
camera_mat = torch.inverse(camera_mat)
# Transform world camera space to pixels
p_camera = p_camera.permute(0, 2, 1) # B x 3 x N
pixels = camera_mat[:, :3, :3] @ p_camera
assert use_absolute_depth and negative_depth
pixels, p_depths = pixels[:, :2], pixels[:, 2:3]
p_depths = -p_depths # negative depth
pixels = pixels / p_depths
pixels = pixels.permute(0, 2, 1)
if is_numpy:
pixels = pixels.numpy()
return pixels
def angular_interpolation(res, camera_mat):
batch_size = camera_mat.shape[0]
device = camera_mat.device
input_rays = image_points_to_camera(arange_pixels((res, res), batch_size,
invert_y_axis=True).to(device), camera_mat)
output_rays = image_points_to_camera(arange_pixels((res * 2, res * 2), batch_size,
invert_y_axis=True).to(device), camera_mat)
input_rays = input_rays / input_rays.norm(dim=-1, keepdim=True)
output_rays = output_rays / output_rays.norm(dim=-1, keepdim=True)
def dir2sph(v):
u = (v[..., :2] ** 2).sum(-1).sqrt()
theta = torch.atan2(u, v[..., 2]) / math.pi
phi = torch.atan2(v[..., 1], v[..., 0]) / math.pi
return torch.stack([theta, phi], 1)
input_rays = dir2sph(input_rays).reshape(batch_size, 2, res, res)
output_rays = dir2sph(output_rays).reshape(batch_size, 2, res * 2, res * 2)
return input_rays
def interpolate_sphere(z1, z2, t):
p = (z1 * z2).sum(dim=-1, keepdim=True)
p = p / z1.pow(2).sum(dim=-1, keepdim=True).sqrt()
p = p / z2.pow(2).sum(dim=-1, keepdim=True).sqrt()
omega = torch.acos(p)
s1 = torch.sin((1-t)*omega)/torch.sin(omega)
s2 = torch.sin(t*omega)/torch.sin(omega)
z = s1 * z1 + s2 * z2
return z
def get_camera_rays(camera_matrices, pixels=None, res=None, margin=0):
device = camera_matrices[0].device
batch_size = camera_matrices[0].shape[0]
if pixels is None:
assert res is not None
pixels = arange_pixels((res, res), batch_size, invert_y_axis=True, margin=margin).to(device)
n_points = pixels.size(1)
pixels_world = image_points_to_world(
pixels, camera_mat=camera_matrices[0],
world_mat=camera_matrices[1])
camera_world = origin_to_world(
n_points, camera_mat=camera_matrices[0],
world_mat=camera_matrices[1])
ray_vector = pixels_world - camera_world
ray_vector = ray_vector / ray_vector.norm(dim=-1, keepdim=True)
return ray_vector, camera_world, pixels_world
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
"""
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
using Gram--Schmidt orthogonalization per Section B of [1].
Args:
d6: 6D rotation representation, of size (*, 6)
Returns:
batch of rotation matrices of size (*, 3, 3)
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
On the Continuity of Rotation Representations in Neural Networks.
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Retrieved from http://arxiv.org/abs/1812.07035
"""
a1, a2 = d6[..., :3], d6[..., 3:]
b1 = F.normalize(a1, dim=-1)
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
b2 = F.normalize(b2, dim=-1)
b3 = torch.cross(b1, b2, dim=-1)
return torch.stack((b1, b2, b3), dim=-2)
def camera_9d_to_16d(d9):
d6, translation = d9[..., :6], d9[..., 6:]
rotation = rotation_6d_to_matrix(d6)
RT = torch.eye(4).to(device=d9.device, dtype=d9.dtype).reshape(
1, 4, 4).repeat(d6.size(0), 1, 1)
RT[:, :3, :3] = rotation
RT[:, :3, -1] = translation
return RT.reshape(-1, 16)
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
"""
Converts rotation matrices to 6D rotation representation by Zhou et al. [1]
by dropping the last row. Note that 6D representation is not unique.
Args:
matrix: batch of rotation matrices of size (*, 3, 3)
Returns:
6D rotation representation, of size (*, 6)
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
On the Continuity of Rotation Representations in Neural Networks.
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Retrieved from http://arxiv.org/abs/1812.07035
"""
return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6)
def depth2pts_outside(ray_o, ray_d, depth):
'''
ray_o, ray_d: [..., 3]
depth: [...]; inverse of distance to sphere origin
'''
# note: d1 becomes negative if this mid point is behind camera
d1 = -torch.sum(ray_d * ray_o, dim=-1) / torch.sum(ray_d * ray_d, dim=-1)
p_mid = ray_o + d1.unsqueeze(-1) * ray_d
p_mid_norm = torch.norm(p_mid, dim=-1)
ray_d_cos = 1. / torch.norm(ray_d, dim=-1)
d2 = torch.sqrt(1. - p_mid_norm * p_mid_norm) * ray_d_cos
p_sphere = ray_o + (d1 + d2).unsqueeze(-1) * ray_d
rot_axis = torch.cross(ray_o, p_sphere, dim=-1)
rot_axis = rot_axis / torch.norm(rot_axis, dim=-1, keepdim=True)
phi = torch.asin(p_mid_norm)
theta = torch.asin(p_mid_norm * depth) # depth is inside [0, 1]
rot_angle = (phi - theta).unsqueeze(-1) # [..., 1]
# now rotate p_sphere
# Rodrigues formula: https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
p_sphere_new = p_sphere * torch.cos(rot_angle) + \
torch.cross(rot_axis, p_sphere, dim=-1) * torch.sin(rot_angle) + \
rot_axis * torch.sum(rot_axis*p_sphere, dim=-1, keepdim=True) * (1.-torch.cos(rot_angle))
p_sphere_new = p_sphere_new / torch.norm(p_sphere_new, dim=-1, keepdim=True)
pts = torch.cat((p_sphere_new, depth.unsqueeze(-1)), dim=-1)
# now calculate conventional depth
depth_real = 1. / (depth + TINY_NUMBER) * torch.cos(theta) * ray_d_cos + d1
return pts, depth_real
def intersect_sphere(ray_o, ray_d, radius=1):
'''
ray_o, ray_d: [..., 3]
compute the depth of the intersection point between this ray and unit sphere
'''
# note: d1 becomes negative if this mid point is behind camera
d1 = -torch.sum(ray_d * ray_o, dim=-1) / torch.sum(ray_d * ray_d, dim=-1)
p = ray_o + d1.unsqueeze(-1) * ray_d
# consider the case where the ray does not intersect the sphere
ray_d_cos = 1. / torch.norm(ray_d, dim=-1)
d2 = radius ** 2 - torch.sum(p * p, dim=-1)
mask = (d2 > 0)
d2 = torch.sqrt(d2.clamp(min=1e-6)) * ray_d_cos
d1, d2 = d1.unsqueeze(-1), d2.unsqueeze(-1)
depth_range = [d1 - d2, d1 + d2]
return depth_range, mask
def normalize(x, axis=-1, order=2):
if isinstance(x, torch.Tensor):
l2 = x.norm(p=order, dim=axis, keepdim=True)
return x / (l2 + 1e-8), l2
else:
l2 = np.linalg.norm(x, order, axis)
l2 = np.expand_dims(l2, axis)
l2[l2==0] = 1
return x / l2, l2
def sample_pdf(bins, weights, N_importance, det=False, eps=1e-5):
"""
Sample @N_importance samples from @bins with distribution defined by @weights.
Inputs:
bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2"
weights: (N_rays, N_samples_)
N_importance: the number of samples to draw from the distribution
det: deterministic or not
eps: a small number to prevent division by zero
Outputs:
samples: the sampled samples
Source: https://github.com/kwea123/nerf_pl/blob/master/models/rendering.py
"""
N_rays, N_samples_ = weights.shape
weights = weights + eps # prevent division by zero (don't do inplace op!)
pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_)
cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function
cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1)
# padded to 0~1 inclusive
if det:
u = torch.linspace(0, 1, N_importance, device=bins.device)
u = u.expand(N_rays, N_importance)
else:
u = torch.rand(N_rays, N_importance, device=bins.device)
u = u.contiguous()
inds = torch.searchsorted(cdf, u)
below = torch.clamp_min(inds-1, 0)
above = torch.clamp_max(inds, N_samples_)
inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance)
cdf_g = torch.gather(cdf, 1, inds_sampled)
cdf_g = cdf_g.view(N_rays, N_importance, 2)
bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2)
denom = cdf_g[...,1]-cdf_g[...,0]
denom[denom<eps] = 1 # denom equals 0 means a bin has weight 0, in which case it will not be sampled
# anyway, therefore any value for it is fine (set to 1 here)
samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0])
return samples
def normalization_inverse_sqrt_dist_centered(x_in_world, view_cell_center, max_depth):
localized = x_in_world - view_cell_center
local = torch.sqrt(torch.linalg.norm(localized, dim=-1))
res = localized / (math.sqrt(max_depth) * local[..., None])
return res
######################################################################################
|