File size: 25,027 Bytes
94ada0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import numpy as np
from numpy.lib.function_base import angle
import torch
import torch.nn.functional as F
import math

from scipy.spatial.transform import Rotation as Rot
HUGE_NUMBER = 1e10
TINY_NUMBER = 1e-6      # float32 only has 7 decimal digits precision


def get_camera_mat(fov=49.13, invert=True):
    # fov = 2 * arctan(sensor / (2 * focal))
    # focal = (sensor / 2)  * 1 / (tan(0.5 * fov))
    # in our case, sensor = 2 as pixels are in [-1, 1]
    focal = 1. / np.tan(0.5 * fov * np.pi/180.)
    focal = focal.astype(np.float32)
    mat = torch.tensor([
        [focal, 0., 0., 0.],
        [0., focal, 0., 0.],
        [0., 0., 1, 0.],
        [0., 0., 0., 1.]
    ]).reshape(1, 4, 4)
    if invert:
        mat = torch.inverse(mat)
    return mat


def get_random_pose(range_u, range_v, range_radius, batch_size=32,
                    invert=False, gaussian=False, angular=False):
    loc, (u, v) = sample_on_sphere(range_u, range_v, size=(batch_size), gaussian=gaussian, angular=angular)
    radius = range_radius[0] + torch.rand(batch_size) * (range_radius[1] - range_radius[0])
    loc = loc * radius.unsqueeze(-1)
    R = look_at(loc)
    RT = torch.eye(4).reshape(1, 4, 4).repeat(batch_size, 1, 1)
    RT[:, :3, :3] = R
    RT[:, :3, -1] = loc

    if invert:
        RT = torch.inverse(RT)
    
    def N(a, range_a):
        if range_a[0] == range_a[1]:
            return a * 0
        return (a - range_a[0]) / (range_a[1] - range_a[0])
    
    val_u, val_v, val_r = N(u, range_u), N(v, range_v), N(radius, range_radius)
    return RT, (val_u, val_v, val_r)


def get_camera_pose(range_u, range_v, range_r, val_u=0.5, val_v=0.5, val_r=0.5,
                    batch_size=32, invert=False,  gaussian=False, angular=False):
    r0, rr = range_r[0], range_r[1] - range_r[0]
    r = r0 + val_r * rr
    if not gaussian:
        u0, ur = range_u[0], range_u[1] - range_u[0]
        v0, vr = range_v[0], range_v[1] - range_v[0]   
        u = u0 + val_u * ur
        v = v0 + val_v * vr
    else:
        mean_u, mean_v = sum(range_u) / 2, sum(range_v) / 2
        vu, vv = mean_u - range_u[0], mean_v - range_v[0]
        u = mean_u + vu * val_u
        v = mean_v + vv * val_v
        
    loc, _ = sample_on_sphere((u, u), (v, v), size=(batch_size), angular=angular)
    radius = torch.ones(batch_size) * r
    loc = loc * radius.unsqueeze(-1)
    R = look_at(loc)
    RT = torch.eye(4).reshape(1, 4, 4).repeat(batch_size, 1, 1)
    RT[:, :3, :3] = R
    RT[:, :3, -1] = loc

    if invert:
        RT = torch.inverse(RT)
    return RT


def get_camera_pose_v2(range_u, range_v, range_r, mode, invert=False, gaussian=False, angular=False):
    r0, rr = range_r[0], range_r[1] - range_r[0]
    val_u, val_v = mode[:,0], mode[:,1]
    val_r = torch.ones_like(val_u) * 0.5
    if not gaussian:
        u0, ur = range_u[0], range_u[1] - range_u[0]
        v0, vr = range_v[0], range_v[1] - range_v[0]
        u = u0 + val_u * ur
        v = v0 + val_v * vr
    else:
        mean_u, mean_v = sum(range_u) / 2, sum(range_v) / 2
        vu, vv = mean_u - range_u[0], mean_v - range_v[0]
        u = mean_u + vu * val_u
        v = mean_v + vv * val_v
    
    loc = to_sphere(u, v, angular)
    radius = r0 + val_r * rr
    loc = loc * radius.unsqueeze(-1)
    R = look_at(loc)
    RT = torch.eye(4).to(R.device).reshape(1, 4, 4).repeat(R.size(0), 1, 1)
    RT[:, :3, :3] = R
    RT[:, :3, -1] = loc

    if invert:
        RT = torch.inverse(RT)
    return RT, (val_u, val_v, val_r)


def to_sphere(u, v, angular=False):
    T = torch if isinstance(u, torch.Tensor) else np
    if not angular:
        theta = 2 * math.pi * u
        phi = T.arccos(1 - 2 * v)
    else:
        theta, phi = u, v
    
    cx = T.sin(phi) * T.cos(theta)
    cy = T.sin(phi) * T.sin(theta)
    cz = T.cos(phi)
    return T.stack([cx, cy, cz], -1)


def sample_on_sphere(range_u=(0, 1), range_v=(0, 1), size=(1,),
                     to_pytorch=True, gaussian=False, angular=False):
    if not gaussian:
        u = np.random.uniform(*range_u, size=size)
        v = np.random.uniform(*range_v, size=size)
    else:
        mean_u, mean_v = sum(range_u) / 2, sum(range_v) / 2
        var_u, var_v = mean_u - range_u[0], mean_v - range_v[0]
        u = np.random.normal(size=size) * var_u + mean_u
        v = np.random.normal(size=size) * var_v + mean_v

    sample = to_sphere(u, v, angular)
    if to_pytorch:
        sample = torch.tensor(sample).float()
        u, v = torch.tensor(u).float(), torch.tensor(v).float()

    return sample, (u, v)


def look_at(eye, at=np.array([0, 0, 0]), up=np.array([0, 0, 1]), eps=1e-5,
            to_pytorch=True):
    if not isinstance(eye, torch.Tensor):
        # this is the original code from GRAF
        at = at.astype(float).reshape(1, 3)
        up = up.astype(float).reshape(1, 3)
        eye = eye.reshape(-1, 3)
        up = up.repeat(eye.shape[0] // up.shape[0], axis=0)
        eps = np.array([eps]).reshape(1, 1).repeat(up.shape[0], axis=0)
        z_axis = eye - at
        z_axis /= np.max(np.stack([np.linalg.norm(z_axis,
                                                axis=1, keepdims=True), eps]))
        x_axis = np.cross(up, z_axis)
        x_axis /= np.max(np.stack([np.linalg.norm(x_axis,
                                                axis=1, keepdims=True), eps]))
        y_axis = np.cross(z_axis, x_axis)
        y_axis /= np.max(np.stack([np.linalg.norm(y_axis,
                                                axis=1, keepdims=True), eps]))
        r_mat = np.concatenate(
            (x_axis.reshape(-1, 3, 1), y_axis.reshape(-1, 3, 1), z_axis.reshape(
                -1, 3, 1)), axis=2)
        if to_pytorch:
            r_mat = torch.tensor(r_mat).float()
    else:
        
        def normalize(x, axis=-1, order=2):
            l2 = x.norm(p=order, dim=axis, keepdim=True).clamp(min=1e-8)
            return x / l2
        
        at, up = torch.from_numpy(at).float().to(eye.device), torch.from_numpy(up).float().to(eye.device)
        z_axis = normalize(eye - at[None, :])
        x_axis = normalize(torch.cross(up[None,:].expand_as(z_axis), z_axis, dim=-1))
        y_axis = normalize(torch.cross(z_axis, x_axis, dim=-1))
        r_mat = torch.stack([x_axis, y_axis, z_axis], dim=-1)

    return r_mat


def get_rotation_matrix(axis='z', value=0., batch_size=32):
    r = Rot.from_euler(axis, value * 2 * np.pi).as_dcm()
    r = torch.from_numpy(r).reshape(1, 3, 3).repeat(batch_size, 1, 1)
    return r


def get_corner_rays(corner_pixels, camera_matrices, res):
    assert (res + 1) * (res + 1) == corner_pixels.size(1)
    batch_size = camera_matrices[0].size(0)
    rays, origins, _ = get_camera_rays(camera_matrices, corner_pixels)
    corner_rays = torch.cat([rays, torch.cross(origins, rays, dim=-1)], -1)
    corner_rays = corner_rays.reshape(batch_size, res+1, res+1, 6).permute(0,3,1,2)
    corner_rays = torch.cat([corner_rays[..., :-1, :-1], corner_rays[..., 1:, :-1], corner_rays[..., 1:, 1:], corner_rays[..., :-1, 1:]], 1)
    return corner_rays
    

def arange_pixels(
        resolution=(128, 128), 
        batch_size=1, 
        subsample_to=None, 
        invert_y_axis=False, 
        margin=0,
        corner_aligned=True,
        jitter=None
    ):
    ''' Arranges pixels for given resolution in range image_range.

    The function returns the unscaled pixel locations as integers and the
    scaled float values.

    Args:
        resolution (tuple): image resolution
        batch_size (int): batch size
        subsample_to (int): if integer and > 0, the points are randomly
            subsampled to this value
    '''
    h, w = resolution
    n_points = resolution[0] * resolution[1]
    uh = 1 if corner_aligned else 1 - (1 / h)
    uw = 1 if corner_aligned else 1 - (1 / w)
    if margin > 0:
        uh = uh + (2 / h) * margin
        uw = uw + (2 / w) * margin 
        w, h = w + margin * 2, h + margin * 2

    x, y = torch.linspace(-uw, uw, w), torch.linspace(-uh, uh, h)
    if jitter is not None:
        dx = (torch.ones_like(x).uniform_() - 0.5) * 2 / w * jitter
        dy = (torch.ones_like(y).uniform_() - 0.5) * 2 / h * jitter
        x, y = x + dx, y + dy
    x, y = torch.meshgrid(x, y)
    pixel_scaled = torch.stack([x, y], -1).permute(1,0,2).reshape(1, -1, 2).repeat(batch_size, 1, 1)
    
    # Subsample points if subsample_to is not None and > 0
    if (subsample_to is not None and subsample_to > 0 and subsample_to < n_points):
        idx = np.random.choice(pixel_scaled.shape[1], size=(subsample_to,),
                               replace=False)
        pixel_scaled = pixel_scaled[:, idx]

    if invert_y_axis:
        pixel_scaled[..., -1] *= -1.

    return pixel_scaled


def to_pytorch(tensor, return_type=False):
    ''' Converts input tensor to pytorch.

    Args:
        tensor (tensor): Numpy or Pytorch tensor
        return_type (bool): whether to return input type
    '''
    is_numpy = False
    if type(tensor) == np.ndarray:
        tensor = torch.from_numpy(tensor)
        is_numpy = True
    tensor = tensor.clone()
    if return_type:
        return tensor, is_numpy
    return tensor


def transform_to_world(pixels, depth, camera_mat, world_mat, scale_mat=None,
                       invert=True, use_absolute_depth=True):
    ''' Transforms pixel positions p with given depth value d to world coordinates.

    Args:
        pixels (tensor): pixel tensor of size B x N x 2
        depth (tensor): depth tensor of size B x N x 1
        camera_mat (tensor): camera matrix
        world_mat (tensor): world matrix
        scale_mat (tensor): scale matrix
        invert (bool): whether to invert matrices (default: true)
    '''
    assert(pixels.shape[-1] == 2)
    if scale_mat is None:
        scale_mat = torch.eye(4).unsqueeze(0).repeat(
            camera_mat.shape[0], 1, 1).to(camera_mat.device)

    # Convert to pytorch
    pixels, is_numpy = to_pytorch(pixels, True)
    depth = to_pytorch(depth)
    camera_mat = to_pytorch(camera_mat)
    world_mat = to_pytorch(world_mat)
    scale_mat = to_pytorch(scale_mat)

    # Invert camera matrices
    if invert:
        camera_mat = torch.inverse(camera_mat)
        world_mat = torch.inverse(world_mat)
        scale_mat = torch.inverse(scale_mat)

    # Transform pixels to homogen coordinates
    pixels = pixels.permute(0, 2, 1)
    pixels = torch.cat([pixels, torch.ones_like(pixels)], dim=1)

    # Project pixels into camera space
    if use_absolute_depth:
        pixels[:, :2] = pixels[:, :2] * depth.permute(0, 2, 1).abs()
        pixels[:, 2:3] = pixels[:, 2:3] * depth.permute(0, 2, 1)
    else:
        pixels[:, :3] = pixels[:, :3] * depth.permute(0, 2, 1)
    
    # Transform pixels to world space
    p_world = scale_mat @ world_mat @ camera_mat @ pixels

    # Transform p_world back to 3D coordinates
    p_world = p_world[:, :3].permute(0, 2, 1)

    if is_numpy:
        p_world = p_world.numpy()
    return p_world


def transform_to_camera_space(p_world, world_mat, camera_mat=None, scale_mat=None):
    ''' Transforms world points to camera space.
        Args:
        p_world (tensor): world points tensor of size B x N x 3
        camera_mat (tensor): camera matrix
        world_mat (tensor): world matrix
        scale_mat (tensor): scale matrix
    '''
    batch_size, n_p, _ = p_world.shape
    device = p_world.device

    # Transform world points to homogen coordinates
    p_world = torch.cat([p_world, torch.ones(
        batch_size, n_p, 1).to(device)], dim=-1).permute(0, 2, 1)

    # Apply matrices to transform p_world to camera space
    if scale_mat is None:
        if camera_mat is None:
            p_cam = world_mat @ p_world
        else:
            p_cam = camera_mat @ world_mat @ p_world
    else:
        p_cam = camera_mat @ world_mat @ scale_mat @ p_world

    # Transform points back to 3D coordinates
    p_cam = p_cam[:, :3].permute(0, 2, 1)
    return p_cam


def origin_to_world(n_points, camera_mat, world_mat, scale_mat=None,
                    invert=False):
    ''' Transforms origin (camera location) to world coordinates.

    Args:
        n_points (int): how often the transformed origin is repeated in the
            form (batch_size, n_points, 3)
        camera_mat (tensor): camera matrix
        world_mat (tensor): world matrix
        scale_mat (tensor): scale matrix
        invert (bool): whether to invert the matrices (default: true)
    '''
    batch_size = camera_mat.shape[0]
    device = camera_mat.device
    # Create origin in homogen coordinates
    p = torch.zeros(batch_size, 4, n_points).to(device)
    p[:, -1] = 1.

    if scale_mat is None:
        scale_mat = torch.eye(4).unsqueeze(
            0).repeat(batch_size, 1, 1).to(device)

    # Invert matrices
    if invert:
        camera_mat = torch.inverse(camera_mat)
        world_mat = torch.inverse(world_mat)
        scale_mat = torch.inverse(scale_mat)

    # Apply transformation
    p_world = scale_mat @ world_mat @ camera_mat @ p

    # Transform points back to 3D coordinates
    p_world = p_world[:, :3].permute(0, 2, 1)
    return p_world


def image_points_to_world(image_points, camera_mat, world_mat, scale_mat=None,
                          invert=False, negative_depth=True):
    ''' Transforms points on image plane to world coordinates.

    In contrast to transform_to_world, no depth value is needed as points on
    the image plane have a fixed depth of 1.

    Args:
        image_points (tensor): image points tensor of size B x N x 2
        camera_mat (tensor): camera matrix
        world_mat (tensor): world matrix
        scale_mat (tensor): scale matrix
        invert (bool): whether to invert matrices
    '''
    batch_size, n_pts, dim = image_points.shape
    assert(dim == 2)
    device = image_points.device
    d_image = torch.ones(batch_size, n_pts, 1).to(device)
    if negative_depth:
        d_image *= -1.
    return transform_to_world(image_points, d_image, camera_mat, world_mat,
                              scale_mat, invert=invert)


def image_points_to_camera(image_points, camera_mat, 
                           invert=False, negative_depth=True, use_absolute_depth=True):
    batch_size, n_pts, dim = image_points.shape
    assert(dim == 2)
    device = image_points.device
    d_image = torch.ones(batch_size, n_pts, 1).to(device)
    if negative_depth:
        d_image *= -1.

    # Convert to pytorch
    pixels, is_numpy = to_pytorch(image_points, True)
    depth = to_pytorch(d_image)
    camera_mat = to_pytorch(camera_mat)

    # Invert camera matrices
    if invert:
        camera_mat = torch.inverse(camera_mat)
    
    # Transform pixels to homogen coordinates
    pixels = pixels.permute(0, 2, 1)
    pixels = torch.cat([pixels, torch.ones_like(pixels)], dim=1)

    # Project pixels into camera space
    if use_absolute_depth:
        pixels[:, :2] = pixels[:, :2] * depth.permute(0, 2, 1).abs()
        pixels[:, 2:3] = pixels[:, 2:3] * depth.permute(0, 2, 1)
    else:
        pixels[:, :3] = pixels[:, :3] * depth.permute(0, 2, 1)

    # Transform pixels to world space
    p_camera = camera_mat @ pixels

    # Transform p_world back to 3D coordinates
    p_camera = p_camera[:, :3].permute(0, 2, 1)

    if is_numpy:
        p_camera = p_camera.numpy()
    return p_camera


def camera_points_to_image(camera_points, camera_mat, 
                           invert=False, negative_depth=True, use_absolute_depth=True):
    batch_size, n_pts, dim = camera_points.shape
    assert(dim == 3)
    device = camera_points.device

    # Convert to pytorch
    p_camera, is_numpy = to_pytorch(camera_points, True)
    camera_mat = to_pytorch(camera_mat)

    # Invert camera matrices
    if invert:
        camera_mat = torch.inverse(camera_mat)

    # Transform world camera space to pixels
    p_camera = p_camera.permute(0, 2, 1)  # B x 3 x N
    pixels = camera_mat[:, :3, :3] @ p_camera

    assert use_absolute_depth and negative_depth
    pixels, p_depths = pixels[:, :2], pixels[:, 2:3]
    p_depths = -p_depths  # negative depth
    pixels = pixels / p_depths

    pixels = pixels.permute(0, 2, 1)
    if is_numpy:
        pixels = pixels.numpy()
    return pixels


def angular_interpolation(res, camera_mat):
    batch_size = camera_mat.shape[0]
    device = camera_mat.device
    input_rays  = image_points_to_camera(arange_pixels((res, res), batch_size, 
        invert_y_axis=True).to(device), camera_mat)
    output_rays = image_points_to_camera(arange_pixels((res * 2, res * 2), batch_size,
        invert_y_axis=True).to(device), camera_mat)
    input_rays  = input_rays / input_rays.norm(dim=-1, keepdim=True)
    output_rays = output_rays / output_rays.norm(dim=-1, keepdim=True)

    def dir2sph(v):
        u = (v[..., :2] ** 2).sum(-1).sqrt()
        theta = torch.atan2(u, v[..., 2]) / math.pi
        phi = torch.atan2(v[..., 1], v[..., 0]) / math.pi
        return torch.stack([theta, phi], 1)

    input_rays  = dir2sph(input_rays).reshape(batch_size, 2, res, res)
    output_rays = dir2sph(output_rays).reshape(batch_size, 2, res * 2, res * 2)
    return input_rays


def interpolate_sphere(z1, z2, t):
    p = (z1 * z2).sum(dim=-1, keepdim=True)
    p = p / z1.pow(2).sum(dim=-1, keepdim=True).sqrt()
    p = p / z2.pow(2).sum(dim=-1, keepdim=True).sqrt()
    omega = torch.acos(p)
    s1 = torch.sin((1-t)*omega)/torch.sin(omega)
    s2 = torch.sin(t*omega)/torch.sin(omega)
    z = s1 * z1 + s2 * z2
    return z


def get_camera_rays(camera_matrices, pixels=None, res=None, margin=0):
    device     = camera_matrices[0].device
    batch_size = camera_matrices[0].shape[0]
    if pixels is None:
        assert res is not None
        pixels = arange_pixels((res, res), batch_size, invert_y_axis=True, margin=margin).to(device)
    n_points = pixels.size(1)
    pixels_world = image_points_to_world(
            pixels, camera_mat=camera_matrices[0],
            world_mat=camera_matrices[1])
    camera_world = origin_to_world(
            n_points, camera_mat=camera_matrices[0],
            world_mat=camera_matrices[1])
    ray_vector = pixels_world - camera_world
    ray_vector = ray_vector / ray_vector.norm(dim=-1, keepdim=True)
    return ray_vector, camera_world, pixels_world


def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
    """
    Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
    using Gram--Schmidt orthogonalization per Section B of [1].
    Args:
        d6: 6D rotation representation, of size (*, 6)

    Returns:
        batch of rotation matrices of size (*, 3, 3)

    [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
    On the Continuity of Rotation Representations in Neural Networks.
    IEEE Conference on Computer Vision and Pattern Recognition, 2019.
    Retrieved from http://arxiv.org/abs/1812.07035
    """

    a1, a2 = d6[..., :3], d6[..., 3:]
    b1 = F.normalize(a1, dim=-1)
    b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
    b2 = F.normalize(b2, dim=-1)
    b3 = torch.cross(b1, b2, dim=-1)
    return torch.stack((b1, b2, b3), dim=-2)


def camera_9d_to_16d(d9):
    d6, translation = d9[..., :6], d9[..., 6:]
    rotation = rotation_6d_to_matrix(d6)
    RT = torch.eye(4).to(device=d9.device, dtype=d9.dtype).reshape(
        1, 4, 4).repeat(d6.size(0), 1, 1)
    RT[:, :3, :3] = rotation
    RT[:, :3, -1] = translation
    return RT.reshape(-1, 16)

def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
    """
    Converts rotation matrices to 6D rotation representation by Zhou et al. [1]
    by dropping the last row. Note that 6D representation is not unique.
    Args:
        matrix: batch of rotation matrices of size (*, 3, 3)

    Returns:
        6D rotation representation, of size (*, 6)

    [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
    On the Continuity of Rotation Representations in Neural Networks.
    IEEE Conference on Computer Vision and Pattern Recognition, 2019.
    Retrieved from http://arxiv.org/abs/1812.07035
    """
    return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6)


def depth2pts_outside(ray_o, ray_d, depth):
    '''
    ray_o, ray_d: [..., 3]
    depth: [...]; inverse of distance to sphere origin
    '''
    # note: d1 becomes negative if this mid point is behind camera
    d1 = -torch.sum(ray_d * ray_o, dim=-1) / torch.sum(ray_d * ray_d, dim=-1)
    p_mid = ray_o + d1.unsqueeze(-1) * ray_d
    p_mid_norm = torch.norm(p_mid, dim=-1)
    ray_d_cos = 1. / torch.norm(ray_d, dim=-1)
    d2 = torch.sqrt(1. - p_mid_norm * p_mid_norm) * ray_d_cos
    p_sphere = ray_o + (d1 + d2).unsqueeze(-1) * ray_d

    rot_axis = torch.cross(ray_o, p_sphere, dim=-1)
    rot_axis = rot_axis / torch.norm(rot_axis, dim=-1, keepdim=True)
    phi = torch.asin(p_mid_norm)
    theta = torch.asin(p_mid_norm * depth)  # depth is inside [0, 1]
    rot_angle = (phi - theta).unsqueeze(-1)     # [..., 1]

    # now rotate p_sphere
    # Rodrigues formula: https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
    p_sphere_new = p_sphere * torch.cos(rot_angle) + \
                torch.cross(rot_axis, p_sphere, dim=-1) * torch.sin(rot_angle) + \
                rot_axis * torch.sum(rot_axis*p_sphere, dim=-1, keepdim=True) * (1.-torch.cos(rot_angle))
    p_sphere_new = p_sphere_new / torch.norm(p_sphere_new, dim=-1, keepdim=True)
    pts = torch.cat((p_sphere_new, depth.unsqueeze(-1)), dim=-1)

    # now calculate conventional depth
    depth_real = 1. / (depth + TINY_NUMBER) * torch.cos(theta) * ray_d_cos + d1
    return pts, depth_real


def intersect_sphere(ray_o, ray_d, radius=1):
    '''
    ray_o, ray_d: [..., 3]
    compute the depth of the intersection point between this ray and unit sphere
    '''
    # note: d1 becomes negative if this mid point is behind camera
    d1 = -torch.sum(ray_d * ray_o, dim=-1) / torch.sum(ray_d * ray_d, dim=-1)
    p = ray_o + d1.unsqueeze(-1) * ray_d
    # consider the case where the ray does not intersect the sphere
    ray_d_cos = 1. / torch.norm(ray_d, dim=-1)
    d2 = radius ** 2 - torch.sum(p * p, dim=-1)
    mask = (d2 > 0)
    d2 = torch.sqrt(d2.clamp(min=1e-6)) * ray_d_cos
    d1, d2 = d1.unsqueeze(-1), d2.unsqueeze(-1)
    depth_range = [d1 - d2, d1 + d2]
    return depth_range, mask


def normalize(x, axis=-1, order=2):
    if isinstance(x, torch.Tensor):
        l2 = x.norm(p=order, dim=axis, keepdim=True)
        return x / (l2 + 1e-8), l2

    else:
        l2 = np.linalg.norm(x, order, axis)
        l2 = np.expand_dims(l2, axis)
        l2[l2==0] = 1
        return x / l2, l2


def sample_pdf(bins, weights, N_importance, det=False, eps=1e-5):
    """
    Sample @N_importance samples from @bins with distribution defined by @weights.
    Inputs:
        bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2"
        weights: (N_rays, N_samples_)
        N_importance: the number of samples to draw from the distribution
        det: deterministic or not
        eps: a small number to prevent division by zero
    Outputs:
        samples: the sampled samples
    Source: https://github.com/kwea123/nerf_pl/blob/master/models/rendering.py
    """
    N_rays, N_samples_ = weights.shape
    weights = weights + eps # prevent division by zero (don't do inplace op!)
    pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_)
    cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function
    cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1)  # (N_rays, N_samples_+1)
                                                               # padded to 0~1 inclusive

    if det:
        u = torch.linspace(0, 1, N_importance, device=bins.device)
        u = u.expand(N_rays, N_importance)
    else:
        u = torch.rand(N_rays, N_importance, device=bins.device)
    u = u.contiguous()

    inds = torch.searchsorted(cdf, u)
    below = torch.clamp_min(inds-1, 0)
    above = torch.clamp_max(inds, N_samples_)

    inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance)
    cdf_g = torch.gather(cdf, 1, inds_sampled)
    cdf_g = cdf_g.view(N_rays, N_importance, 2)
    bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2)

    denom = cdf_g[...,1]-cdf_g[...,0]
    denom[denom<eps] = 1 # denom equals 0 means a bin has weight 0, in which case it will not be sampled
                         # anyway, therefore any value for it is fine (set to 1 here)

    samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0])
    return samples


def normalization_inverse_sqrt_dist_centered(x_in_world, view_cell_center, max_depth):
    localized = x_in_world - view_cell_center
    local = torch.sqrt(torch.linalg.norm(localized, dim=-1))
    res = localized / (math.sqrt(max_depth) * local[..., None])
    return res


######################################################################################