Spaces:
Running
Running
File size: 17,199 Bytes
a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef f318f5f a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef e7f0792 ffb2e0b e7f0792 ffb2e0b e7f0792 ffb2e0b e7f0792 ffb2e0b e7f0792 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 001e17d a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef 001e17d a8af1a7 a113cef 001e17d a113cef 001e17d a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 a113cef a8af1a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import gradio as gr
import pandas as pd
import plotly.express as px
from dataclasses import dataclass, field
from typing import List, Dict, Tuple, Union
import json
import os
from collections import OrderedDict
@dataclass
class ScorecardCategory:
name: str
questions: List[Dict[str, Union[str, List[str]]]]
scores: Dict[str, int] = field(default_factory=dict)
def load_scorecard_templates(directory):
templates = []
for filename in os.listdir(directory):
if filename.endswith('.json'):
with open(os.path.join(directory, filename), 'r') as file:
data = json.load(file)
templates.append(ScorecardCategory(
name=data['name'],
questions=data['questions']
))
return templates
# Load scorecard templates
scorecard_template = load_scorecard_templates('scorecard_templates')
# Function to read JSON files and populate models dictionary
def load_models_from_json(directory):
models = {}
for filename in os.listdir(directory):
if filename.endswith('.json'):
with open(os.path.join(directory, filename), 'r') as file:
model_data = json.load(file)
model_name = model_data['metadata']['Name']
models[model_name] = model_data
# Sort the models alphabetically by name
return OrderedDict(sorted(models.items(), key=lambda x: x[0].lower()))
# Load models from JSON files
models = load_models_from_json('model_data')
css = """
.container {
display: flex;
flex-wrap: wrap;
justify-content: space-between;
}
.container.svelte-1hfxrpf.svelte-1hfxrpf {
height: 0%;
}
.card {
width: calc(50% - 20px);
border: 1px solid #e0e0e0;
border-radius: 10px;
padding: 20px;
margin-bottom: 20px;
background-color: #ffffff;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
transition: all 0.3s ease;
}
.card:hover {
box-shadow: 0 6px 8px rgba(0,0,0,0.15);
transform: translateY(-5px);
}
.card-title {
font-size: 1.4em;
font-weight: bold;
margin-bottom: 15px;
color: #333;
border-bottom: 2px solid #e0e0e0;
padding-bottom: 10px;
}
.question {
margin-bottom: 20px;
padding: 15px;
border-radius: 5px;
}
.question h3 {
margin-top: 0;
color: #2c3e50;
}
.question-yes {
background-color: #e6ffe6;
}
.question-no {
background-color: #ffe6e6;
}
.question-na {
background-color: #fffde6;
}
.status {
font-weight: bold;
}
details {
margin-top: 10px;
}
summary {
cursor: pointer;
color: #3498db;
font-weight: bold;
}
summary:hover {
text-decoration: underline;
}
.category-score, .total-score {
background-color: #f0f8ff;
border: 1px solid #b0d4ff;
border-radius: 5px;
padding: 10px;
margin-top: 15px;
font-weight: bold;
text-align: center;
}
.total-score {
font-size: 1.2em;
background-color: #e6f3ff;
border-color: #80bdff;
}
.leaderboard-card {
width: 100%;
max-width: 800px;
margin: 0 auto;
}
.leaderboard-table {
width: 100%;
border-collapse: collapse;
}
.leaderboard-table th, .leaderboard-table td {
padding: 10px;
text-align: left;
border-bottom: 1px solid #e0e0e0;
}
.leaderboard-table th {
background-color: #f2f2f2;
font-weight: bold;
}
.leaderboard-table tr:last-child td {
border-bottom: none;
}
@media (max-width: 768px) {
.card {
width: 100%;
}
}
.dark {
/* General styles */
background-color: #1a1a1a;
color: #e0e0e0;
/* Card styles */
.card {
background-color: #2a2a2a;
border-color: #444;
box-shadow: 0 4px 6px rgba(0,0,0,0.3);
}
.card:hover {
box-shadow: 0 6px 8px rgba(0,0,0,0.4);
}
.card-title {
color: #fff;
border-bottom-color: #444;
}
/* Question styles */
.question {
background-color: #333;
}
.question h3 {
color: #e0e0e0;
}
.question-yes {
background-color: #1a3a1a;
/* Make accordion match parent background */
details {
background-color: #1a3a1a;
}
}
.question-no {
background-color: #3a1a1a;
/* Make accordion match parent background */
details {
background-color: #3a1a1a;
}
}
.question-na {
background-color: #3a3a1a;
/* Make accordion match parent background */
details {
background-color: #3a3a1a;
}
}
/* Summary and details styles */
summary {
color: #3498db;
}
summary:hover {
color: #5dade2;
}
/* Score styles */
.category-score, .total-score {
background-color: #2c3e50;
border-color: #34495e;
}
.total-score {
background-color: #34495e;
border-color: #2c3e50;
}
/* Leaderboard styles */
.leaderboard-table th {
background-color: #2c3e50;
color: #fff;
}
.leaderboard-table td {
border-bottom-color: #444;
}
/* Gradio component styles */
.gradio-container {
background-color: #1a1a1a;
}
.input-group, .output-group {
background-color: #2a2a2a;
}
input, select, textarea {
background-color: #333;
color: #e0e0e0;
border-color: #444;
}
button {
background-color: #3498db;
color: #fff;
}
button:hover {
background-color: #2980b9;
}
}
"""
def create_leaderboard():
scores = []
for model, data in models.items():
total_score = 0
total_questions = 0
for category in data['scores']:
for question, details in data['scores'][category].items():
if details['status'] == 'Yes':
total_score += 1
total_questions += 1
score_percentage = (total_score / total_questions) * 100 if total_questions > 0 else 0
scores.append((model, score_percentage))
df = pd.DataFrame(scores, columns=['Model', 'Score Percentage'])
df = df.sort_values('Score Percentage', ascending=False).reset_index(drop=True)
html = "<div class='card leaderboard-card'>"
html += "<div class='card-title'>AI Model Social Impact Leaderboard</div>"
html += "<table class='leaderboard-table'>"
html += "<tr><th>Rank</th><th>Model</th><th>Score Percentage</th></tr>"
for i, (_, row) in enumerate(df.iterrows(), 1):
html += f"<tr><td>{i}</td><td>{row['Model']}</td><td>{row['Score Percentage']:.2f}%</td></tr>"
html += "</table></div>"
return html
def create_category_chart(selected_models, selected_categories):
if not selected_models:
return px.bar(title='Please select at least one model for comparison')
data = []
for model in selected_models:
for category in selected_categories:
if category in models[model]['scores']:
total_questions = len(models[model]['scores'][category])
yes_count = sum(1 for q in models[model]['scores'][category].values() if q['status'] == 'Yes')
score_percentage = (yes_count / total_questions) * 100 if total_questions > 0 else 0
data.append({'Model': model, 'Category': category, 'Score Percentage': score_percentage})
df = pd.DataFrame(data)
if df.empty:
return px.bar(title='No data available for the selected models and categories')
fig = px.bar(df, x='Model', y='Score Percentage', color='Category',
title='AI Model Scores by Category',
labels={'Score Percentage': 'Score Percentage'},
category_orders={"Category": selected_categories})
return fig
def update_detailed_scorecard(model, selected_categories):
if not model: # Check if model is None or an empty string
return [
gr.update(value="Please select a model to view details.", visible=True),
gr.update(visible=False),
gr.update(visible=False)
]
metadata_md = f"## Model Metadata for {model}\n\n"
for key, value in models[model]['metadata'].items():
metadata_md += f"**{key}:** {value}\n\n"
total_yes = 0
total_no = 0
total_na = 0
all_cards_content = "<div class='container'>"
for category in scorecard_template:
if category.name in selected_categories and category.name in models[model]['scores']:
category_data = models[model]['scores'][category.name]
card_content = f"<div class='card'><div class='card-title'>{category.name}</div>"
category_yes = 0
category_no = 0
category_na = 0
for question, details in category_data.items():
status = details['status']
source = details.get('source', 'N/A')
if status == 'Yes':
bg_class = 'question-yes'
category_yes += 1
total_yes += 1
elif status == 'No':
bg_class = 'question-no'
category_no += 1
total_no += 1
else:
bg_class = 'question-na'
category_na += 1
total_na += 1
card_content += f"<div class='question {bg_class}'>"
card_content += f"<h3>{question}</h3>\n\n"
card_content += f"<p><span class='status'>{status}</span></p>\n\n<p><strong>Source:</strong> {source}</p>\n\n"
if details.get('applicable_evaluations'):
card_content += "<details><summary>View Applicable Evaluations</summary>\n\n"
card_content += "<ul>"
for eval in details['applicable_evaluations']:
card_content += f"<li>{eval}</li>"
card_content += "</ul>\n"
card_content += "</details>\n\n"
else:
card_content += "<details><summary>View Applicable Evaluations</summary>\n\n"
card_content += "<p>No applicable evaluations.</p>\n"
card_content += "</details>\n\n"
card_content += "</div>"
category_score = category_yes / (category_yes + category_no) * 100 if (category_yes + category_no) > 0 else 0
card_content += f"<div class='category-score'>Category Score: {category_score:.2f}% (Yes: {category_yes}, No: {category_no}, N/A: {category_na})</div>"
card_content += "</div>"
all_cards_content += card_content
all_cards_content += "</div>"
total_score = total_yes / (total_yes + total_no) * 100 if (total_yes + total_no) > 0 else 0
total_score_md = f"<div class='total-score'>Total Score: {total_score:.2f}% (Yes: {total_yes}, No: {total_no}, N/A: {total_na})</div>"
return [
gr.update(value=metadata_md, visible=True),
gr.update(value=all_cards_content, visible=True),
gr.update(value=total_score_md, visible=True)
]
def update_dashboard(tab, selected_models, selected_model, selected_categories):
leaderboard_visibility = gr.update(visible=False)
category_chart_visibility = gr.update(visible=False)
detailed_scorecard_visibility = gr.update(visible=False)
model_chooser_visibility = gr.update(visible=False)
model_multi_chooser_visibility = gr.update(visible=False)
category_filter_visibility = gr.update(visible=False)
if tab == "Leaderboard":
leaderboard_visibility = gr.update(visible=True)
leaderboard_html = create_leaderboard()
return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility,
model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility,
gr.update(value=leaderboard_html), gr.update(), gr.update(), gr.update(), gr.update()]
elif tab == "Category Analysis":
category_chart_visibility = gr.update(visible=True)
model_multi_chooser_visibility = gr.update(visible=True)
category_filter_visibility = gr.update(visible=True)
category_chart = create_category_chart(selected_models or [], selected_categories)
return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility,
model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility,
gr.update(), gr.update(value=category_chart), gr.update(), gr.update(), gr.update()]
elif tab == "Detailed Scorecard":
detailed_scorecard_visibility = gr.update(visible=True)
model_chooser_visibility = gr.update(visible=True)
category_filter_visibility = gr.update(visible=True)
if selected_model:
scorecard_updates = update_detailed_scorecard(selected_model, selected_categories)
else:
scorecard_updates = [
gr.update(value="Please select a model to view details.", visible=True),
gr.update(visible=False),
gr.update(visible=False)
]
return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility,
model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility,
gr.update(), gr.update()] + scorecard_updates
with gr.Blocks(css=css) as demo:
gr.Markdown("# AI Model Social Impact Scorecard Dashboard")
with gr.Row():
tab_selection = gr.Radio(["Leaderboard", "Category Analysis", "Detailed Scorecard"],
label="Select Tab", value="Leaderboard")
with gr.Row():
model_chooser = gr.Dropdown(choices=[""] + list(models.keys()), # Add an empty option
label="Select Model for Details",
value="", # Set default value to empty string
interactive=True, visible=False)
model_multi_chooser = gr.Dropdown(choices=list(models.keys()),
label="Select Models for Comparison",
multiselect=True, interactive=True, visible=False)
category_filter = gr.CheckboxGroup(choices=[cat.name for cat in scorecard_template],
label="Filter Categories",
value=[cat.name for cat in scorecard_template],
visible=False)
with gr.Column(visible=True) as leaderboard_tab:
leaderboard_output = gr.HTML()
with gr.Column(visible=False) as category_analysis_tab:
category_chart = gr.Plot()
with gr.Column(visible=False) as detailed_scorecard_tab:
model_metadata = gr.Markdown()
all_category_cards = gr.HTML()
total_score = gr.Markdown()
# Initialize the dashboard with the leaderboard
leaderboard_output.value = create_leaderboard()
tab_selection.change(fn=update_dashboard,
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter],
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab,
model_chooser, model_multi_chooser, category_filter,
leaderboard_output, category_chart, model_metadata, all_category_cards, total_score])
model_chooser.change(fn=update_dashboard,
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter],
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab,
model_chooser, model_multi_chooser, category_filter,
leaderboard_output, category_chart, model_metadata, all_category_cards, total_score])
model_multi_chooser.change(fn=update_dashboard,
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter],
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab,
model_chooser, model_multi_chooser, category_filter,
leaderboard_output, category_chart, model_metadata, all_category_cards, total_score])
category_filter.change(fn=update_dashboard,
inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter],
outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab,
model_chooser, model_multi_chooser, category_filter,
leaderboard_output, category_chart, model_metadata, all_category_cards, total_score])
# Launch the app
if __name__ == "__main__":
demo.launch() |