Spaces:
Running
Running
File size: 11,787 Bytes
067a7ae daa2725 067a7ae c4f8321 067a7ae c4f8321 067a7ae c4f8321 067a7ae c4f8321 067a7ae 0031b66 067a7ae c4f8321 067a7ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import torch
import tensorflow as tf
from tf_keras import models, layers
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, TFAutoModelForQuestionAnswering
import gradio as gr
import re
# Check if GPU is available and use it if possible
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the models and tokenizers
qa_model_name = 'salsarra/ConfliBERT-QA'
qa_model = TFAutoModelForQuestionAnswering.from_pretrained(qa_model_name)
qa_tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
ner_model_name = 'eventdata-utd/conflibert-named-entity-recognition'
ner_model = AutoModelForTokenClassification.from_pretrained(ner_model_name).to(device)
ner_tokenizer = AutoTokenizer.from_pretrained(ner_model_name)
clf_model_name = 'eventdata-utd/conflibert-binary-classification'
clf_model = AutoModelForSequenceClassification.from_pretrained(clf_model_name).to(device)
clf_tokenizer = AutoTokenizer.from_pretrained(clf_model_name)
multi_clf_model_name = 'eventdata-utd/conflibert-satp-relevant-multilabel'
multi_clf_model = AutoModelForSequenceClassification.from_pretrained(multi_clf_model_name).to(device)
multi_clf_tokenizer = AutoTokenizer.from_pretrained(multi_clf_model_name)
# Define the class names for text classification
class_names = ['Negative', 'Positive']
multi_class_names = ["Armed Assault", "Bombing or Explosion", "Kidnapping", "Other"] # Updated labels
# Define the NER labels and colors
ner_labels = {
'Organisation': 'blue',
'Person': 'red',
'Location': 'green',
'Quantity': 'orange',
'Weapon': 'purple',
'Nationality': 'cyan',
'Temporal': 'magenta',
'DocumentReference': 'brown',
'MilitaryPlatform': 'yellow',
'Money': 'pink'
}
def handle_error_message(e, default_limit=512):
error_message = str(e)
pattern = re.compile(r"The size of tensor a \((\d+)\) must match the size of tensor b \((\d+)\)")
match = pattern.search(error_message)
if match:
number_1, number_2 = match.groups()
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
pattern_qa = re.compile(r"indices\[0,(\d+)\] = \d+ is not in \[0, (\d+)\)")
match_qa = pattern_qa.search(error_message)
if match_qa:
number_1, number_2 = match_qa.groups()
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size is larger than model limits of {default_limit}</span>"
# Define the functions for each task
def question_answering(context, question):
try:
inputs = qa_tokenizer(question, context, return_tensors='tf', truncation=True)
outputs = qa_model(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = qa_tokenizer.convert_tokens_to_string(qa_tokenizer.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end]))
return f"<span style='color: green; font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
def replace_unk(tokens):
return [token.replace('[UNK]', "'") for token in tokens]
def named_entity_recognition(text):
try:
inputs = ner_tokenizer(text, return_tensors='pt', truncation=True)
with torch.no_grad():
outputs = ner_model(**inputs)
ner_results = outputs.logits.argmax(dim=2).squeeze().tolist()
tokens = ner_tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze().tolist())
tokens = replace_unk(tokens)
entities = []
seen_labels = set()
for i in range(len(tokens)):
token = tokens[i]
label = ner_model.config.id2label[ner_results[i]].split('-')[-1]
if token.startswith('##'):
if entities:
entities[-1][0] += token[2:]
else:
entities.append([token, label])
if label != 'O':
seen_labels.add(label)
highlighted_text = ""
for token, label in entities:
color = ner_labels.get(label, 'black')
if label != 'O':
highlighted_text += f"<span style='color: {color}; font-weight: bold;'>{token}</span> "
else:
highlighted_text += f"{token} "
legend = "<div><strong>NER Tags Found:</strong><ul style='list-style-type: disc; padding-left: 20px;'>"
for label in seen_labels:
color = ner_labels.get(label, 'black')
legend += f"<li style='color: {color}; font-weight: bold;'>{label}</li>"
legend += "</ul></div>"
return f"<div>{highlighted_text}</div>{legend}"
except Exception as e:
return handle_error_message(e)
def text_classification(text):
try:
inputs = clf_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(device)
with torch.no_grad():
outputs = clf_model(**inputs)
logits = outputs.logits.squeeze().tolist()
predicted_class = torch.argmax(outputs.logits, dim=1).item()
confidence = torch.softmax(outputs.logits, dim=1).max().item() * 100
if predicted_class == 1: # Positive class
result = f"<span style='color: green; font-weight: bold;'>Positive: The text is related to conflict, violence, or politics. (Confidence: {confidence:.2f}%)</span>"
else: # Negative class
result = f"<span style='color: red; font-weight: bold;'>Negative: The text is not related to conflict, violence, or politics. (Confidence: {confidence:.2f}%)</span>"
return result
except Exception as e:
return handle_error_message(e)
def multilabel_classification(text):
try:
inputs = multi_clf_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(device)
with torch.no_grad():
outputs = multi_clf_model(**inputs)
predicted_classes = torch.sigmoid(outputs.logits).squeeze().tolist()
if len(predicted_classes) != len(multi_class_names):
return f"Error: Number of predicted classes ({len(predicted_classes)}) does not match number of class names ({len(multi_class_names)})."
results = []
for i in range(len(predicted_classes)):
confidence = predicted_classes[i] * 100
if predicted_classes[i] >= 0.5:
results.append(f"<span style='color: green; font-weight: bold;'>{multi_class_names[i]} (Confidence: {confidence:.2f}%)</span>")
else:
results.append(f"<span style='color: red; font-weight: bold;'>{multi_class_names[i]} (Confidence: {confidence:.2f}%)</span>")
return " / ".join(results)
except Exception as e:
return handle_error_message(e)
# Define the Gradio interface
def chatbot(task, text=None, context=None, question=None):
if task == "Question Answering":
if context and question:
return question_answering(context, question)
else:
return "Please provide both context and question for the Question Answering task."
elif task == "Named Entity Recognition":
if text:
return named_entity_recognition(text)
else:
return "Please provide text for the Named Entity Recognition task."
elif task == "Text Classification":
if text:
return text_classification(text)
else:
return "Please provide text for the Text Classification task."
elif task == "Multilabel Classification":
if text:
return multilabel_classification(text)
else:
return "Please provide text for the Multilabel Classification task."
else:
return "Please select a valid task."
css = """
body {
background-color: #f0f8ff;
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
}
h1 {
color: #2e8b57;
text-align: center;
font-size: 2em;
}
h2 {
color: #ff8c00;
text-align: center;
font-size: 1.5em;
}
.gradio-container {
max-width: 100%;
margin: 10px auto;
padding: 10px;
background-color: #ffffff;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.gr-input, .gr-output {
background-color: #ffffff;
border: 1px solid #ddd;
border-radius: 5px;
padding: 10px;
font-size: 1em;
}
.gr-title {
font-size: 1.5em;
font-weight: bold;
color: #2e8b57;
margin-bottom: 10px;
text-align: center;
}
.gr-description {
font-size: 1.2em;
color: #ff8c00;
margin-bottom: 10px;
text-align: center;
}
.header {
display: flex;
justify-content: center;
align-items: center;
padding: 10px;
flex-wrap: wrap;
}
.header-title-center a {
font-size: 4em; /* Increased font size */
font-weight: bold; /* Made text bold */
color: darkorange; /* Darker orange color */
text-align: center;
display: block;
}
.gr-button {
background-color: #ff8c00;
color: white;
border: none;
padding: 10px 20px;
font-size: 1em;
border-radius: 5px;
cursor: pointer;
}
.gr-button:hover {
background-color: #ff4500;
}
.footer {
text-align: center;
margin-top: 10px;
font-size: 0.9em; /* Updated font size */
color: #666;
width: 100%;
}
.footer a {
color: #2e8b57;
font-weight: bold;
text-decoration: none;
}
.footer a:hover {
text-decoration: underline;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row(elem_id="header"):
gr.Markdown("<div class='header-title-center'><a href='https://eventdata.utdallas.edu/conflibert/'>ConfliBERT</a></div>", elem_id="header-title-center")
gr.Markdown("<span style='color: black;'>Select a task and provide the necessary inputs:</span>")
task = gr.Dropdown(choices=["Question Answering", "Named Entity Recognition", "Text Classification", "Multilabel Classification"], label="Select Task")
with gr.Row():
text_input = gr.Textbox(lines=5, placeholder="Enter the text here...", label="Text")
context_input = gr.Textbox(lines=5, placeholder="Enter the context here...", label="Context", visible=False)
question_input = gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question", visible=False)
output = gr.HTML(label="Output")
def update_inputs(task):
if task == "Question Answering":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
task.change(fn=update_inputs, inputs=task, outputs=[text_input, context_input, question_input])
def chatbot_interface(task, text, context, question):
result = chatbot(task, text, context, question)
return result
submit_button = gr.Button("Submit", elem_id="gr-button")
submit_button.click(fn=chatbot_interface, inputs=[task, text_input, context_input, question_input], outputs=output)
gr.Markdown("<div class='footer'><a href='https://eventdata.utdallas.edu/'>UTD Event Data</a> | <a href='https://www.utdallas.edu/'>University of Texas at Dallas</a></div>")
gr.Markdown("<div class='footer'>Developed By: <a href='https://www.linkedin.com/in/sultan-alsarra-phd-56977a63/' target='_blank'>Sultan Alsarra</a></div>")
demo.launch(share=True)
|