|
import cv2 |
|
import math |
|
import numpy as np |
|
import os |
|
import queue |
|
import threading |
|
import torch |
|
from basicsr.utils.download_util import load_file_from_url |
|
from torch.nn import functional as F |
|
|
|
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
|
|
|
|
class RealESRGANer(): |
|
"""A helper class for upsampling images with RealESRGAN. |
|
|
|
Args: |
|
scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4. |
|
model_path (str): The path to the pretrained model. It can be urls (will first download it automatically). |
|
model (nn.Module): The defined network. Default: None. |
|
tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop |
|
input images into tiles, and then process each of them. Finally, they will be merged into one image. |
|
0 denotes for do not use tile. Default: 0. |
|
tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10. |
|
pre_pad (int): Pad the input images to avoid border artifacts. Default: 10. |
|
half (float): Whether to use half precision during inference. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
scale, |
|
model_path, |
|
dni_weight=None, |
|
model=None, |
|
tile=0, |
|
tile_pad=10, |
|
pre_pad=10, |
|
half=False, |
|
device=None, |
|
gpu_id=None): |
|
self.scale = scale |
|
self.tile_size = tile |
|
self.tile_pad = tile_pad |
|
self.pre_pad = pre_pad |
|
self.mod_scale = None |
|
self.half = half |
|
|
|
|
|
if gpu_id: |
|
self.device = torch.device( |
|
f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu') if device is None else device |
|
else: |
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device |
|
|
|
if isinstance(model_path, list): |
|
|
|
assert len(model_path) == len(dni_weight), 'model_path and dni_weight should have the save length.' |
|
loadnet = self.dni(model_path[0], model_path[1], dni_weight) |
|
else: |
|
|
|
if model_path.startswith('https://'): |
|
model_path = load_file_from_url( |
|
url=model_path, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None) |
|
loadnet = torch.load(model_path, map_location=torch.device('cpu')) |
|
|
|
|
|
if 'params_ema' in loadnet: |
|
keyname = 'params_ema' |
|
else: |
|
keyname = 'params' |
|
model.load_state_dict(loadnet[keyname], strict=True) |
|
|
|
model.eval() |
|
self.model = model.to(self.device) |
|
if self.half: |
|
self.model = self.model.half() |
|
|
|
def dni(self, net_a, net_b, dni_weight, key='params', loc='cpu'): |
|
"""Deep network interpolation. |
|
|
|
``Paper: Deep Network Interpolation for Continuous Imagery Effect Transition`` |
|
""" |
|
net_a = torch.load(net_a, map_location=torch.device(loc)) |
|
net_b = torch.load(net_b, map_location=torch.device(loc)) |
|
for k, v_a in net_a[key].items(): |
|
net_a[key][k] = dni_weight[0] * v_a + dni_weight[1] * net_b[key][k] |
|
return net_a |
|
|
|
def pre_process(self, img): |
|
"""Pre-process, such as pre-pad and mod pad, so that the images can be divisible |
|
""" |
|
img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float() |
|
self.img = img.unsqueeze(0).to(self.device) |
|
if self.half: |
|
self.img = self.img.half() |
|
|
|
|
|
if self.pre_pad != 0: |
|
self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect') |
|
|
|
if self.scale == 2: |
|
self.mod_scale = 2 |
|
elif self.scale == 1: |
|
self.mod_scale = 4 |
|
if self.mod_scale is not None: |
|
self.mod_pad_h, self.mod_pad_w = 0, 0 |
|
_, _, h, w = self.img.size() |
|
if (h % self.mod_scale != 0): |
|
self.mod_pad_h = (self.mod_scale - h % self.mod_scale) |
|
if (w % self.mod_scale != 0): |
|
self.mod_pad_w = (self.mod_scale - w % self.mod_scale) |
|
self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect') |
|
|
|
def process(self): |
|
|
|
self.output = self.model(self.img) |
|
|
|
def tile_process(self): |
|
"""It will first crop input images to tiles, and then process each tile. |
|
Finally, all the processed tiles are merged into one images. |
|
|
|
Modified from: https://github.com/ata4/esrgan-launcher |
|
""" |
|
batch, channel, height, width = self.img.shape |
|
output_height = height * self.scale |
|
output_width = width * self.scale |
|
output_shape = (batch, channel, output_height, output_width) |
|
|
|
|
|
self.output = self.img.new_zeros(output_shape) |
|
tiles_x = math.ceil(width / self.tile_size) |
|
tiles_y = math.ceil(height / self.tile_size) |
|
|
|
|
|
for y in range(tiles_y): |
|
for x in range(tiles_x): |
|
|
|
ofs_x = x * self.tile_size |
|
ofs_y = y * self.tile_size |
|
|
|
input_start_x = ofs_x |
|
input_end_x = min(ofs_x + self.tile_size, width) |
|
input_start_y = ofs_y |
|
input_end_y = min(ofs_y + self.tile_size, height) |
|
|
|
|
|
input_start_x_pad = max(input_start_x - self.tile_pad, 0) |
|
input_end_x_pad = min(input_end_x + self.tile_pad, width) |
|
input_start_y_pad = max(input_start_y - self.tile_pad, 0) |
|
input_end_y_pad = min(input_end_y + self.tile_pad, height) |
|
|
|
|
|
input_tile_width = input_end_x - input_start_x |
|
input_tile_height = input_end_y - input_start_y |
|
tile_idx = y * tiles_x + x + 1 |
|
input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad] |
|
|
|
|
|
try: |
|
with torch.no_grad(): |
|
output_tile = self.model(input_tile) |
|
except RuntimeError as error: |
|
print('Error', error) |
|
print(f'\tTile {tile_idx}/{tiles_x * tiles_y}') |
|
|
|
|
|
output_start_x = input_start_x * self.scale |
|
output_end_x = input_end_x * self.scale |
|
output_start_y = input_start_y * self.scale |
|
output_end_y = input_end_y * self.scale |
|
|
|
|
|
output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale |
|
output_end_x_tile = output_start_x_tile + input_tile_width * self.scale |
|
output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale |
|
output_end_y_tile = output_start_y_tile + input_tile_height * self.scale |
|
|
|
|
|
self.output[:, :, output_start_y:output_end_y, |
|
output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile, |
|
output_start_x_tile:output_end_x_tile] |
|
|
|
def post_process(self): |
|
|
|
if self.mod_scale is not None: |
|
_, _, h, w = self.output.size() |
|
self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale] |
|
|
|
if self.pre_pad != 0: |
|
_, _, h, w = self.output.size() |
|
self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale] |
|
return self.output |
|
|
|
@torch.no_grad() |
|
def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'): |
|
h_input, w_input = img.shape[0:2] |
|
|
|
img = img.astype(np.float32) |
|
if np.max(img) > 256: |
|
max_range = 65535 |
|
print('\tInput is a 16-bit image') |
|
else: |
|
max_range = 255 |
|
img = img / max_range |
|
if len(img.shape) == 2: |
|
img_mode = 'L' |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) |
|
elif img.shape[2] == 4: |
|
img_mode = 'RGBA' |
|
alpha = img[:, :, 3] |
|
img = img[:, :, 0:3] |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
if alpha_upsampler == 'realesrgan': |
|
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB) |
|
else: |
|
img_mode = 'RGB' |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
self.pre_process(img) |
|
if self.tile_size > 0: |
|
self.tile_process() |
|
else: |
|
self.process() |
|
output_img = self.post_process() |
|
output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy() |
|
output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0)) |
|
if img_mode == 'L': |
|
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY) |
|
|
|
|
|
if img_mode == 'RGBA': |
|
if alpha_upsampler == 'realesrgan': |
|
self.pre_process(alpha) |
|
if self.tile_size > 0: |
|
self.tile_process() |
|
else: |
|
self.process() |
|
output_alpha = self.post_process() |
|
output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy() |
|
output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0)) |
|
output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY) |
|
else: |
|
h, w = alpha.shape[0:2] |
|
output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA) |
|
output_img[:, :, 3] = output_alpha |
|
|
|
|
|
if max_range == 65535: |
|
output = (output_img * 65535.0).round().astype(np.uint16) |
|
else: |
|
output = (output_img * 255.0).round().astype(np.uint8) |
|
|
|
if outscale is not None and outscale != float(self.scale): |
|
output = cv2.resize( |
|
output, ( |
|
int(w_input * outscale), |
|
int(h_input * outscale), |
|
), interpolation=cv2.INTER_LANCZOS4) |
|
|
|
return output, img_mode |
|
|
|
|
|
class PrefetchReader(threading.Thread): |
|
"""Prefetch images. |
|
|
|
Args: |
|
img_list (list[str]): A image list of image paths to be read. |
|
num_prefetch_queue (int): Number of prefetch queue. |
|
""" |
|
|
|
def __init__(self, img_list, num_prefetch_queue): |
|
super().__init__() |
|
self.que = queue.Queue(num_prefetch_queue) |
|
self.img_list = img_list |
|
|
|
def run(self): |
|
for img_path in self.img_list: |
|
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) |
|
self.que.put(img) |
|
|
|
self.que.put(None) |
|
|
|
def __next__(self): |
|
next_item = self.que.get() |
|
if next_item is None: |
|
raise StopIteration |
|
return next_item |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
|
|
class IOConsumer(threading.Thread): |
|
|
|
def __init__(self, opt, que, qid): |
|
super().__init__() |
|
self._queue = que |
|
self.qid = qid |
|
self.opt = opt |
|
|
|
def run(self): |
|
while True: |
|
msg = self._queue.get() |
|
if isinstance(msg, str) and msg == 'quit': |
|
break |
|
|
|
output = msg['output'] |
|
save_path = msg['save_path'] |
|
cv2.imwrite(save_path, output) |
|
print(f'IO worker {self.qid} is done.') |
|
|