|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Generate images using pretrained network pickle.""" |
|
|
|
from ast import parse |
|
import os |
|
from pyexpat import model |
|
import re |
|
from typing import List, Optional, Tuple, Union |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from networks_fastgan import MyGenerator |
|
import random |
|
|
|
|
|
def parse_range(s: Union[str, List]) -> List[int]: |
|
'''Parse a comma separated list of numbers or ranges and return a list of ints. |
|
|
|
Example: '1,2,5-10' returns [1, 2, 5, 6, 7] |
|
''' |
|
if isinstance(s, list): return s |
|
ranges = [] |
|
range_re = re.compile(r'^(\d+)-(\d+)$') |
|
for p in s.split(','): |
|
m = range_re.match(p) |
|
if m: |
|
ranges.extend(range(int(m.group(1)), int(m.group(2))+1)) |
|
else: |
|
ranges.append(int(p)) |
|
return ranges |
|
|
|
|
|
|
|
def parse_vec2(s: Union[str, Tuple[float, float]]) -> Tuple[float, float]: |
|
'''Parse a floating point 2-vector of syntax 'a,b'. |
|
|
|
Example: |
|
'0,1' returns (0,1) |
|
''' |
|
if isinstance(s, tuple): return s |
|
parts = s.split(',') |
|
if len(parts) == 2: |
|
return (float(parts[0]), float(parts[1])) |
|
raise ValueError(f'cannot parse 2-vector {s}') |
|
|
|
|
|
|
|
def make_transform(translate: Tuple[float,float], angle: float): |
|
m = np.eye(3) |
|
s = np.sin(angle/360.0*np.pi*2) |
|
c = np.cos(angle/360.0*np.pi*2) |
|
m[0][0] = c |
|
m[0][1] = s |
|
m[0][2] = translate[0] |
|
m[1][0] = -s |
|
m[1][1] = c |
|
m[1][2] = translate[1] |
|
return m |
|
|
|
|
|
|
|
def generate_images( |
|
model_path, |
|
seeds = "10-12", |
|
truncation_psi = 1.0, |
|
noise_mode = "const", |
|
outdir = "out", |
|
translate = "0,0", |
|
rotate = 0, |
|
number_of_images = 16 |
|
): |
|
model_owner = "huggan" |
|
|
|
model_path_dict = { |
|
'Impressionism' : 'projected_gan_impressionism', |
|
'Cubism' : 'projected_gan_cubism', |
|
'Abstract Expressionism' : 'projected_gan_abstract_expressionism', |
|
'Pop Art' : 'projected_gan_popart', |
|
'Minimalism' : 'projected_gan_minimalism', |
|
'Color Field' : 'projected_gan_color_field', |
|
'Hana Hanak houses' : 'projected_gan_Hana_Hanak', |
|
'Hana Hanak houses - abstract expressionism' : 'projected_gan_abstract_expressionism_hana', |
|
'Hana Hanak houses - color field' : 'projected_gan_color_field_hana', |
|
|
|
} |
|
|
|
model_path = model_owner + "/" + model_path_dict[model_path] |
|
print(model_path) |
|
print(seeds) |
|
seeds=[random.randint(1,230)] |
|
|
|
|
|
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') |
|
G = MyGenerator.from_pretrained(model_path) |
|
os.makedirs(outdir, exist_ok=True) |
|
|
|
label = torch.zeros([1, G.c_dim], device=device) |
|
""" |
|
if G.c_dim != 0: |
|
if class_idx is None: |
|
raise click.ClickException('Must specify class label with --class when using a conditional network') |
|
label[:, class_idx] = 1 |
|
else: |
|
if class_idx is not None: |
|
print ('warn: --class=lbl ignored when running on an unconditional network') |
|
""" |
|
|
|
print(f"z dimenzija mi je: {G.z_dim}") |
|
|
|
|
|
|
|
|
|
print(seeds) |
|
for seed_idx, seed in enumerate(seeds): |
|
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds))) |
|
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device).float() |
|
|
|
|
|
|
|
if hasattr(G.synthesis, 'input'): |
|
m = make_transform(translate, rotate) |
|
m = np.linalg.inv(m) |
|
G.synthesis.input.transform.copy_(torch.from_numpy(m)) |
|
|
|
img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode) |
|
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) |
|
print(seed_idx) |
|
""" |
|
#first image |
|
if seed_idx == 0: |
|
imgs_row = img[0].cpu().numpy() |
|
else: |
|
imgs_row = np.hstack((imgs_row, img[0].cpu().numpy()))""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
return PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB') |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
generate_images() |
|
|
|
|
|
|