File size: 6,176 Bytes
33719d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# original implementation: https://github.com/odegeasslbc/FastGAN-pytorch/blob/main/models.py
#
# modified by Axel Sauer for "Projected GANs Converge Faster"
#
import torch.nn as nn
from blocks import (InitLayer, UpBlockBig, UpBlockBigCond, UpBlockSmall, UpBlockSmallCond, SEBlock, conv2d)
from huggingface_hub import PyTorchModelHubMixin

def normalize_second_moment(x, dim=1, eps=1e-8):
    return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()


class DummyMapping(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, z, c, **kwargs):
        return z.unsqueeze(1)  # to fit the StyleGAN API


class FastganSynthesis(nn.Module):
    def __init__(self, ngf=128, z_dim=256, nc=3, img_resolution=256, lite=False):
        super().__init__()
        self.img_resolution = img_resolution
        self.z_dim = z_dim

        # channel multiplier
        nfc_multi = {2: 16, 4:16, 8:8, 16:4, 32:2, 64:2, 128:1, 256:0.5,
                     512:0.25, 1024:0.125}
        nfc = {}
        for k, v in nfc_multi.items():
            nfc[k] = int(v*ngf)

        # layers
        self.init = InitLayer(z_dim, channel=nfc[2], sz=4)

        UpBlock = UpBlockSmall if lite else UpBlockBig

        self.feat_8   = UpBlock(nfc[4], nfc[8])
        self.feat_16  = UpBlock(nfc[8], nfc[16])
        self.feat_32  = UpBlock(nfc[16], nfc[32])
        self.feat_64  = UpBlock(nfc[32], nfc[64])
        self.feat_128 = UpBlock(nfc[64], nfc[128])
        self.feat_256 = UpBlock(nfc[128], nfc[256])

        self.se_64  = SEBlock(nfc[4], nfc[64])
        self.se_128 = SEBlock(nfc[8], nfc[128])
        self.se_256 = SEBlock(nfc[16], nfc[256])

        self.to_big = conv2d(nfc[img_resolution], nc, 3, 1, 1, bias=True)

        if img_resolution > 256:
            self.feat_512 = UpBlock(nfc[256], nfc[512])
            self.se_512 = SEBlock(nfc[32], nfc[512])
        if img_resolution > 512:
            self.feat_1024 = UpBlock(nfc[512], nfc[1024])

    def forward(self, input, c, **kwargs):
        # map noise to hypersphere as in "Progressive Growing of GANS"
        input = normalize_second_moment(input[:, 0])

        feat_4 = self.init(input)
        feat_8 = self.feat_8(feat_4)
        feat_16 = self.feat_16(feat_8)
        feat_32 = self.feat_32(feat_16)
        feat_64 = self.se_64(feat_4, self.feat_64(feat_32))
        feat_128 = self.se_128(feat_8,  self.feat_128(feat_64))

        if self.img_resolution >= 128:
            feat_last = feat_128

        if self.img_resolution >= 256:
            feat_last = self.se_256(feat_16, self.feat_256(feat_last))

        if self.img_resolution >= 512:
            feat_last = self.se_512(feat_32, self.feat_512(feat_last))

        if self.img_resolution >= 1024:
            feat_last = self.feat_1024(feat_last)

        return self.to_big(feat_last)


class FastganSynthesisCond(nn.Module):
    def __init__(self, ngf=64, z_dim=256, nc=3, img_resolution=256, num_classes=1000, lite=False):
        super().__init__()

        self.z_dim = z_dim
        nfc_multi = {2: 16, 4:16, 8:8, 16:4, 32:2, 64:2, 128:1, 256:0.5,
                     512:0.25, 1024:0.125, 2048:0.125}
        nfc = {}
        for k, v in nfc_multi.items():
            nfc[k] = int(v*ngf)

        self.img_resolution = img_resolution

        self.init = InitLayer(z_dim, channel=nfc[2], sz=4)

        UpBlock = UpBlockSmallCond if lite else UpBlockBigCond

        self.feat_8   = UpBlock(nfc[4], nfc[8], z_dim)
        self.feat_16  = UpBlock(nfc[8], nfc[16], z_dim)
        self.feat_32  = UpBlock(nfc[16], nfc[32], z_dim)
        self.feat_64  = UpBlock(nfc[32], nfc[64], z_dim)
        self.feat_128 = UpBlock(nfc[64], nfc[128], z_dim)
        self.feat_256 = UpBlock(nfc[128], nfc[256], z_dim)

        self.se_64 = SEBlock(nfc[4], nfc[64])
        self.se_128 = SEBlock(nfc[8], nfc[128])
        self.se_256 = SEBlock(nfc[16], nfc[256])

        self.to_big = conv2d(nfc[img_resolution], nc, 3, 1, 1, bias=True)

        if img_resolution > 256:
            self.feat_512 = UpBlock(nfc[256], nfc[512])
            self.se_512 = SEBlock(nfc[32], nfc[512])
        if img_resolution > 512:
            self.feat_1024 = UpBlock(nfc[512], nfc[1024])

        self.embed = nn.Embedding(num_classes, z_dim)

    def forward(self, input, c, update_emas=False):
        c = self.embed(c.argmax(1))

        # map noise to hypersphere as in "Progressive Growing of GANS"
        input = normalize_second_moment(input[:, 0])

        feat_4 = self.init(input)
        feat_8 = self.feat_8(feat_4, c)
        feat_16 = self.feat_16(feat_8, c)
        feat_32 = self.feat_32(feat_16, c)
        feat_64 = self.se_64(feat_4, self.feat_64(feat_32, c))
        feat_128 = self.se_128(feat_8,  self.feat_128(feat_64, c))

        if self.img_resolution >= 128:
            feat_last = feat_128

        if self.img_resolution >= 256:
            feat_last = self.se_256(feat_16, self.feat_256(feat_last, c))

        if self.img_resolution >= 512:
            feat_last = self.se_512(feat_32, self.feat_512(feat_last, c))

        if self.img_resolution >= 1024:
            feat_last = self.feat_1024(feat_last, c)

        return self.to_big(feat_last)


class MyGenerator(nn.Module, PyTorchModelHubMixin):
    def __init__(
        self,
        z_dim=256,
        c_dim=0,
        w_dim=0,
        img_resolution=256,
        img_channels=3,
        ngf=128,
        cond=0,
        mapping_kwargs={},
        synthesis_kwargs={}
    ):
        super().__init__()
        #self.config = kwargs.pop("config", None)
        self.z_dim = z_dim
        self.c_dim = c_dim
        self.w_dim = w_dim
        self.img_resolution = img_resolution
        self.img_channels = img_channels

        # Mapping and Synthesis Networks
        self.mapping = DummyMapping()  # to fit the StyleGAN API
        Synthesis = FastganSynthesisCond if cond else FastganSynthesis
        self.synthesis = Synthesis(ngf=ngf, z_dim=z_dim, nc=img_channels, img_resolution=img_resolution, **synthesis_kwargs)

    def forward(self, z, c, **kwargs):
        w = self.mapping(z, c)
        img = self.synthesis(w, c)
        return img