Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import gradio as gr | |
from models import download_models | |
from rag_backend import Backend | |
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType | |
from llama_cpp_agent.providers import LlamaCppPythonProvider | |
from llama_cpp_agent.chat_history import BasicChatHistory | |
from llama_cpp_agent.chat_history.messages import Roles | |
import cv2 | |
# get the models | |
huggingface_token = os.environ.get('HF_TOKEN') | |
download_models(huggingface_token) | |
documents_paths = { | |
'blockchain': 'data/blockchain', | |
'metaverse': 'data/metaverse', | |
'payment': 'data/payment' | |
} | |
# initialize backend (not ideal as global variable...) | |
backend = Backend() | |
cv2.setNumThreads(1) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
model, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
top_k, | |
repeat_penalty, | |
): | |
chat_template = MessagesFormatterType.GEMMA_2 | |
print("HISTORY SO FAR ", history) | |
matched_path = None | |
words = message.lower() | |
for key, path in documents_paths.items(): | |
if len(history) == 1 and key in words: # check if the user mentions a path word only during second interaction (i.e history has only one entry) | |
matched_path = path | |
break | |
print("matched_path", matched_path) | |
if matched_path: # this case would only be true in second interaction | |
original_message = history[0][0] | |
print("** matched path!!") | |
query_engine = backend.create_index_for_query_engine(matched_path) | |
message = backend.generate_prompt(query_engine, original_message) | |
gr.Info("Relevant context indexed from docs...") | |
elif (not matched_path) and (len(history) > 1): | |
print("Using context from storage db") | |
query_engine = backend.load_index_for_query_engine() | |
message = backend.generate_prompt(query_engine, message) | |
gr.Info("Relevant context extracted from db...") | |
# Load model only if it's not already loaded or if a new model is selected | |
if backend.llm is None or backend.llm_model != model: | |
try: | |
backend.load_model(model) | |
except Exception as e: | |
return f"Error loading model: {str(e)}" | |
provider = LlamaCppPythonProvider(backend.llm) | |
agent = LlamaCppAgent( | |
provider, | |
system_prompt=f"{system_message}", | |
predefined_messages_formatter_type=chat_template, | |
debug_output=True | |
) | |
settings = provider.get_provider_default_settings() | |
settings.temperature = temperature | |
settings.top_k = top_k | |
settings.top_p = top_p | |
settings.max_tokens = max_tokens | |
settings.repeat_penalty = repeat_penalty | |
settings.stream = True | |
messages = BasicChatHistory() | |
# add user and assistant messages to the history | |
for msn in history: | |
user = {'role': Roles.user, 'content': msn[0]} | |
assistant = {'role': Roles.assistant, 'content': msn[1]} | |
messages.add_message(user) | |
messages.add_message(assistant) | |
try: | |
stream = agent.get_chat_response( | |
message, | |
llm_sampling_settings=settings, | |
chat_history=messages, | |
returns_streaming_generator=True, | |
print_output=False | |
) | |
outputs = "" | |
for output in stream: | |
outputs += output | |
yield outputs | |
except Exception as e: | |
yield f"Error during response generation: {str(e)}" | |
demo = gr.ChatInterface( | |
fn=respond, | |
css=""" | |
.gradio-container { | |
background-color: #B9D9EB; | |
color: #003366; | |
}""", | |
additional_inputs=[ | |
gr.Dropdown([ | |
'Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf', | |
'Mistral-Nemo-Instruct-2407-Q5_K_M.gguf', | |
'gemma-2-2b-it-Q6_K_L.gguf', | |
'openchat-3.6-8b-20240522-Q6_K.gguf', | |
'Llama-3-Groq-8B-Tool-Use-Q6_K.gguf', | |
'MiniCPM-V-2_6-Q6_K.gguf', | |
'llama-3.1-storm-8b-q5_k_m.gguf', | |
'orca-2-7b-patent-instruct-llama-2-q5_k_m.gguf' | |
], | |
value="gemma-2-2b-it-Q6_K_L.gguf", | |
label="Model" | |
), | |
gr.Textbox(value="""Solamente all'inizio, presentati come Odi, un assistente ricercatore italiano creato dagli Osservatori del Politecnico di Milano e specializzato nel fornire risposte precise e pertinenti solo ad argomenti di innovazione digitale. | |
Solo nella tua prima risposta, chiedi all'utente di indicare a quale di queste tre sezioni degli Osservatori si riferisce la sua domanda: 'Blockchain', 'Payment' o 'Metaverse'. | |
Per le risposte successive, utilizza la cronologia della chat o il contesto fornito per aiutare l'utente a ottenere una risposta accurata. | |
Non rispondere mai a domande che non sono pertinenti a questi argomenti.""", label="System message"), | |
gr.Slider(minimum=1, maximum=4096, value=3048, step=1, label="Max tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=1.2, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p", | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=100, | |
value=30, | |
step=1, | |
label="Top-k", | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=1.1, | |
step=0.1, | |
label="Repetition penalty", | |
), | |
], | |
retry_btn="Riprova", | |
undo_btn="Annulla", | |
clear_btn="Pulisci", | |
submit_btn="Invia", | |
title="Odi, l'assistente ricercatore degli Osservatori", | |
chatbot=gr.Chatbot( | |
scale=1, | |
likeable=False, | |
show_copy_button=True | |
), | |
examples=[["Ciao, in cosa puoi aiutarmi?"],["Quanto vale il mercato italiano?"], ["Per favore dammi informazioni sugli ambiti applicativi"], ["Svelami una buona ricetta milanese"] ], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |