File size: 4,840 Bytes
3578b4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bdf15b
3578b4b
 
 
 
 
3bdf15b
3578b4b
 
 
3bdf15b
3578b4b
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import gradio as gr
import os
import openai
from newspaper import Article
import json
import re
from transformers import GPT2Tokenizer
import requests


# define the text summarizer function
def text_prompt(request, system_role, page_url, contraseña, temp):
    try:
        headers = {'User-Agent': 'Chrome/83.0.4103.106'}
        response = requests.get(page_url, headers=headers)
        html = response.text

        page = Article('')
        page.set_html(html)
        page.parse()

    except Exception as e:
        return "", f"--- An error occurred while processing the URL: {e} ---", ""
    
    tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
    sentences = page.text.split('.')
    
    tokens = []
    page_text = ""
    
    for sentence in sentences:
        tokens.extend(tokenizer.tokenize(sentence))
        
        # Trim text to a maximum of 1800 tokens
        if len(tokens) > 1800:
            break
        page_text += sentence + ". "
        
    # Delete the last space
    page_text = page_text.strip()

    num_tokens = len(tokens)

    if num_tokens > 10 and contraseña.startswith("sk-"):
        openai.api_key = contraseña
        # get the response from openai API
        try:
            response = openai.ChatCompletion.create(
                model="gpt-3.5-turbo",
                messages=[
                    {"role": "system", "content": system_role},
                    {"role": "user", "content": request + "\n\n" + 'Text:\n\n"' + page_text + '\n"'}
                ],
                max_tokens=2048,
                temperature=temp,
                top_p=0.9,
            )
            # get the response text
            response_text = response['choices'][0]['message']['content']
            total_tokens = response["usage"]["total_tokens"]

            # clean the response text
            response_text = re.sub(r'\s+', ' ', response_text)
            response_text = "#### "+ page.title + "\n\n" + response_text.strip()
            total_tokens_str = str(total_tokens) + " (${:.2f} USD)".format(total_tokens/1000*0.002)


            return page.text, response_text, total_tokens_str
        except Exception as e:
            return page.text, f"--- An error occurred while processing the request: {e} ---", num_tokens
    return page.text, "--- Check API-Key or Min number of tokens:", str(num_tokens)

# define the gradio interface
iface = gr.Interface(
    fn=text_prompt,
    inputs=[gr.Textbox(lines=1, placeholder="Enter your prompt here...", label="Prompt:", type="text"),
            gr.Textbox(lines=1, placeholder="Enter your system-role description here...", label="System:", type="text"),
            gr.Textbox(lines=1, placeholder="Enter the Article's URL here...", label="Article's URL to parse:", type="text"),
            gr.Textbox(lines=1, placeholder="Enter your API-key here...", label="API-Key:", type="password"),
            gr.Slider(0.0,1.0, value=0.3, label="Temperature:")
            ],
    outputs=[gr.Textbox(label="Input:"), gr.Markdown(label="Output:"), gr.Markdown(label="Total Tokens:")],
    examples=[["Summarize the following text as a list:", "Act as a Business Consultant", "https://blog.google/outreach-initiatives/google-org/our-commitment-on-using-ai-to-accelerate-progress-on-global-development-goals/","",0.3],
            ["Generate a summary of the following text. Give me an overview of the main business impact from the text following this template:\n- Summary:\n- Business Impact:\n- Companies:", "Act as a Business Consultant", "https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html","",0.7],
            ["Generate the next insights based on the following text. Indicates N/A if the information is not available in the text.\n- Summary:\n- Acquisition Price:\n- Why is this important for the acquirer:\n- Business Line for the acquirer:\n- Tech Focus for the acquired (list):","Act as a Business Consultant", "https://techcrunch.com/2022/09/28/eqt-acquires-billtrust-a-company-automating-the-invoice-to-cash-process-for-1-7b/","",0.3]
    ],
    title="ChatGPT info extraction from URL",
    description="This tool allows querying the text retrieved from the URL with newspaper3k lib and using OpenAI's [gpt-3.5-turbo] engine.\nThe URL text can be referenced in the prompt as \"following text\".\nA GPT2 tokenizer is included to ensure that the 1.800 token limit for OpenAI queries is not exceeded. Provide a prompt with your request, the description for the system role, the url for text retrieval, your api-key and temperature to process the text."
)

# error capturing in integration as a component

error_message = ""

try:
    iface.queue(concurrency_count=20)
    iface.launch()
except Exception as e:
    error_message = "An error occurred: " + str(e)
    iface.outputs[1].value = error_message