Spaces:
Sleeping
Sleeping
import easyocr | |
from gradio_client import Client, handle_file | |
import pandas as pd | |
import gradio as gr | |
clientImg = Client("dj-dawgs-ipd/IPD-Image-ViT-Finetune") | |
clientEngText = Client("dj-dawgs-ipd/IPD-Text-English-Finetune") | |
clientHingText = Client("dj-dawgs-ipd/IPD-Text-Hinglish") | |
profanity_df = pd.read_csv('Hinglish_Profanity_List.csv' , encoding = 'utf-8') | |
profanity_hn = profanity_df['profanity_hn'] | |
def extract_text(image): | |
reader = easyocr.Reader(['en']) | |
data = [result[1] for result in reader.readtext(image)] | |
return ' '.join([l for l in data]) | |
def predict(image): | |
imgResult = clientImg.predict( | |
image=handle_file(image), | |
api_name="/predict" | |
) | |
label , confidence = imgResult[0]['label'] , float(imgResult[1]['label']) | |
if label == 'finger_gun_to_the_head' and confidence > 0.98: | |
return ["hate" , f"label: {label}, confidence: {confidence}"] | |
elif label != 'finger_gun_to_the_head' and confidence > 0.95: | |
return ["hate" , f"label: {label}, confidence: {confidence}"] | |
else: | |
ocr_text = extract_text(image).lower() | |
engResult = clientEngText.predict( | |
text=ocr_text[:200], | |
api_name="/predict" | |
) | |
hingResult = clientHingText.predict( | |
text=ocr_text[:200], | |
api_name="/predict" | |
) | |
profanityFound = any(word in ocr_text.split() for word in profanity_hn) | |
if profanityFound: | |
return ["hate", "Profanity Found"] | |
elif engResult[0] != "NEITHER" and engResult[1] > 0.5: | |
return ["hate", f"Result: {engResult}, Text: {ocr_text}"] | |
elif hingResult[0] != "NAG" and hingResult[1] > 0.5: | |
return ["hate", f"Result: {hingResult}, Text: {ocr_text}"] | |
else: | |
return ["not_hate", "No hate found, yay!"] | |
# if not profanityFound and engResult[0] == "NEITHER" and hingResult[0] == "NAG": | |
# return ["not_hate" , "No Hate Symbols Detected"] | |
# else: | |
# return ["hate" , "No Hate Symbols Detected"] | |
iface = gr.Interface(fn=predict, | |
inputs = gr.Image(type='filepath'), | |
outputs=[gr.Label(label = "Class (hate or not_hate)") , gr.Label(label = "Explanation")], | |
title = "Hate Speech Detection in Image", | |
description = "Detect hateful symbols or text in Image" | |
) | |
if __name__ == "__main__": | |
iface.launch() |