import streamlit as st from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer # Load your dataset from Hugging Face dataset = load_dataset("diylocals/TestData") # Replace with your actual username and dataset name # Load the IBM Granite model and tokenizer model_name = "ibm-granite/granite-3.0-8b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Streamlit app title st.title("IBM Granite Model Analysis") # Input text area for user input user_input = st.text_area("Enter text for analysis (e.g., voltage readings):", "") if st.button("Analyze"): if user_input: # Prepare input for the model inputs = tokenizer(user_input, return_tensors="pt") # Generate output using the model outputs = model.generate(**inputs) # Decode and display output output_text = tokenizer.decode(outputs[0], skip_special_tokens=True) st.write("Model Output:") st.write(output_text) else: st.warning("Please enter some text for analysis.")