diylocals commited on
Commit
e0cb0a5
1 Parent(s): eb637f4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from datasets import load_dataset
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+
5
+ # Load your dataset from Hugging Face
6
+ dataset = load_dataset("diylocals/TestData") # Replace with your actual username and dataset name
7
+
8
+ # Load the IBM Granite model and tokenizer
9
+ model_name = "ibm-granite/granite-3.0-8b-instruct"
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+ model = AutoModelForCausalLM.from_pretrained(model_name)
12
+
13
+ # Streamlit app title
14
+ st.title("IBM Granite Model Analysis")
15
+
16
+ # Input text area for user input
17
+ user_input = st.text_area("Enter text for analysis (e.g., voltage readings):", "")
18
+
19
+ if st.button("Analyze"):
20
+ if user_input:
21
+ # Prepare input for the model
22
+ inputs = tokenizer(user_input, return_tensors="pt")
23
+
24
+ # Generate output using the model
25
+ outputs = model.generate(**inputs)
26
+
27
+ # Decode and display output
28
+ output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
29
+ st.write("Model Output:")
30
+ st.write(output_text)
31
+ else:
32
+ st.warning("Please enter some text for analysis.")