""" Question Answering with Retrieval QA and LangChain Language Models featuring FAISS vector stores. This script uses the LangChain Language Model API to answer questions using Retrieval QA and FAISS vector stores. It also uses the OpenAI API to generate responses. """ import os import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import HuggingFaceBgeEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from htmlTemplates import css, bot_template, user_template from langchain.llms import HuggingFaceHub def get_pdf_text(pdf_docs): """ Extract text from a list of PDF documents. Parameters ---------- pdf_docs : list List of PDF documents to extract text from. Returns ------- str Extracted text from all the PDF documents. """ text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): """ Split the input text into chunks. Parameters ---------- text : str The input text to be split. Returns ------- list List of text chunks. """ text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): """ Generate a vector store from a list of text chunks using HuggingFace BgeEmbeddings. Parameters ---------- text_chunks : list List of text chunks to be embedded. Returns ------- FAISS A FAISS vector store containing the embeddings of the text chunks. """ model = "BAAI/bge-base-en-v1.5" encode_kwargs = { "normalize_embeddings": True } # set True to compute cosine similarity embeddings = HuggingFaceBgeEmbeddings( model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"} ) vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore): """ Create a conversational retrieval chain using a vector store and a language model. Parameters ---------- vectorstore : FAISS A FAISS vector store containing the embeddings of the text chunks. Returns ------- ConversationalRetrievalChain A conversational retrieval chain for generating responses. """ llm = HuggingFaceHub( repo_id="mistralai/Mistral-7B-Instruct-v0.1", model_kwargs={"temperature": 0.5, "max_length": 512}, ) # llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613") memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question): """ Handle user input and generate a response using the conversational retrieval chain. Parameters ---------- user_question : str The user's question. """ response = st.session_state.conversation({"question": user_question}) st.session_state.chat_history = response["chat_history"] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write( user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True, ) else: st.write( bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True ) def main(): st.set_page_config( page_title="Chat with a Bot that tries to answer questions about multiple PDFs", page_icon=":books:", ) st.markdown("# Chat with a Bot") st.markdown("This bot tries to answer questions about multiple PDFs.") st.write(css, unsafe_allow_html=True) # set huggingface hub token in st.text_input widget # then hide the input huggingface_token = st.text_input("Enter your HuggingFace Hub token", type="password") #openai_api_key = st.text_input("Enter your OpenAI API key", type="password") # set this key as an environment variable os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token #os.environ["OPENAI_API_KEY"] = openai_api_key if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with a Bot 🤖🦾 that tries to answer questions about multiple PDFs :books:") user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", accept_multiple_files=True ) if st.button("Process"): with st.spinner("Processing"): # get pdf text raw_text = get_pdf_text(pdf_docs) # get the text chunks text_chunks = get_text_chunks(raw_text) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chain st.session_state.conversation = get_conversation_chain(vectorstore) if __name__ == "__main__": main()