|
import gradio as gr |
|
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration |
|
import requests |
|
from PIL import Image |
|
import torch, os, re, json |
|
import spaces |
|
|
|
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/74801584018932.png', 'chart_example_1.png') |
|
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/multi_col_1229.png', 'chart_example_2.png') |
|
|
|
|
|
|
|
model = PaliGemmaForConditionalGeneration.from_pretrained("ahmed-masry/chartgemma") |
|
processor = AutoProcessor.from_pretrained("ahmed-masry/chartgemma") |
|
|
|
|
|
@spaces.GPU |
|
def predict(image, input_text): |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
image = image.convert("RGB") |
|
|
|
inputs = processor(text=input_text, images=image, return_tensors="pt") |
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
|
|
prompt_length = inputs['input_ids'].shape[1] |
|
|
|
|
|
generate_ids = model.generate(**inputs, max_new_tokens=512) |
|
output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
|
return output_text |
|
|
|
|
|
image = gr.components.Image(type="pil", label="Chart Image") |
|
input_prompt = gr.components.Textbox(label="Input Prompt") |
|
model_output = gr.components.Textbox(label="Model Output") |
|
examples = [["chart_example_1.png", "Describe the trend of the mortality rates for children before age 5"], |
|
["chart_example_2.png", "What is the share of respondants who prefer Facebook Messenger in the 30-59 age group?"]] |
|
|
|
title = "Interactive Gradio Demo for ChartGemma model" |
|
interface = gr.Interface(fn=predict, |
|
inputs=[image, input_prompt], |
|
outputs=model_output, |
|
examples=examples, |
|
title=title, |
|
theme='gradio/soft') |
|
|
|
interface.launch() |