Spaces:
Runtime error
Runtime error
devanshsrivastav
commited on
Commit
β’
c499248
1
Parent(s):
852f0c9
Updated README.md
Browse files- .gitignore +2 -1
- README.md +87 -14
.gitignore
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
.env
|
2 |
.DS_Store
|
3 |
-
tumai
|
|
|
|
1 |
.env
|
2 |
.DS_Store
|
3 |
+
tumai
|
4 |
+
venv
|
README.md
CHANGED
@@ -5,36 +5,109 @@ sdk: streamlit
|
|
5 |
sdk_version: "1.22.0"
|
6 |
app_file: app.py
|
7 |
---
|
|
|
8 |
# GoEmotions Dashboard - Analyzing Emotions in Text
|
9 |
|
10 |
-
This is a Python script that uses Streamlit, Plotly, and the Hugging Face API to create a web-based dashboard for analyzing emotions in text.
|
|
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
##
|
18 |
|
19 |
-
- Clone this repository to your local machine.
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
```bash
|
23 |
pip install -r requirements.txt
|
24 |
```
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
- Create a `.env` file in the root directory of the project and add your
|
29 |
- Hugging Face API key like this: `HF_API_KEY=<your_api_key_here>`
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
- Run the Streamlit app by typing `streamlit run app.py` or `python -m streamlit run app.py` in the command line.
|
35 |
-
- For GitHub Codespaces, Run: `python -m streamlit run app.py --server.enableCORS false --server.enableXsrfProtection false`
|
36 |
|
37 |
- A web-based dashboard will open in your default browser.
|
38 |
- Type or paste a text input in the text box provided.
|
39 |
-
- The dashboard will
|
40 |
-
-
|
|
|
5 |
sdk_version: "1.22.0"
|
6 |
app_file: app.py
|
7 |
---
|
8 |
+
|
9 |
# GoEmotions Dashboard - Analyzing Emotions in Text
|
10 |
|
11 |
+
This is a Python script that uses Streamlit, Plotly, and the Hugging Face Inference API to create a web-based dashboard for analyzing emotions in text. Finally this dashboard is deployed on Hugging Face Spaces using GitHub Actions.
|
12 |
+
|
13 |
+
## Pre-requisites:
|
14 |
|
15 |
+
- Python 3.7 or higher
|
16 |
|
17 |
+
## Project Structure:
|
18 |
+
```dir
|
19 |
+
GoEmotions/
|
20 |
+
βββ app.py
|
21 |
+
βββ requirements.txt
|
22 |
+
βββ .env
|
23 |
+
βββ README.md
|
24 |
+
βββ assets/
|
25 |
+
βββ .github/workflows
|
26 |
+
```
|
27 |
|
28 |
+
## Setup
|
29 |
|
30 |
+
`Step 1` - Clone this repository to your local machine using the following command, or open the repository in GitHub Codespaces.
|
31 |
+
|
32 |
+
```bash
|
33 |
+
git clone https://github.com/devansh-srivastav/GoEmotions.git
|
34 |
+
```
|
35 |
+
|
36 |
+
`Step 2` - Create and activate a new python virtual environment: (This step can be skipped if working on GitHub Codespaces!)
|
37 |
+
|
38 |
+
```bash
|
39 |
+
python -m venv venv
|
40 |
+
```
|
41 |
+
|
42 |
+
```bash
|
43 |
+
venv\Scripts\activate
|
44 |
+
```
|
45 |
+
|
46 |
+
`Step 3` - Install the required packages using pip: (This step can be skipped if working on GitHub Codespaces as it automatically installs the requirements!)
|
47 |
|
48 |
```bash
|
49 |
pip install -r requirements.txt
|
50 |
```
|
51 |
|
52 |
+
`Step 4`- Create a free account on the [Hugging Face website](https://huggingface.co/) and generate an API key (read).
|
53 |
+
|
54 |
+
`Step 5` - Navigate to the root directory of the project.
|
55 |
+
|
56 |
+
```bash
|
57 |
+
cd GoEmotions
|
58 |
+
```
|
59 |
+
|
60 |
+
`Step 6`
|
61 |
|
62 |
- Create a `.env` file in the root directory of the project and add your
|
63 |
- Hugging Face API key like this: `HF_API_KEY=<your_api_key_here>`
|
64 |
|
65 |
+
`Step 7` - Run the Streamlit app.
|
66 |
+
|
67 |
+
```bash
|
68 |
+
streamlit run app.py
|
69 |
+
```
|
70 |
+
|
71 |
+
or
|
72 |
+
|
73 |
+
```bash
|
74 |
+
python -m streamlit run app.py
|
75 |
+
```
|
76 |
+
|
77 |
+
- If you want to run this application on GitHub Codespaces, you will need to add the following flags to the `streamlit run` command:
|
78 |
+
|
79 |
+
```bash
|
80 |
+
python -m streamlit run app.py --server.enableCORS false --server.enableXsrfProtection false
|
81 |
+
```
|
82 |
+
|
83 |
+
## Deployment to Spaces (CI/CD)
|
84 |
+
|
85 |
+
`Step 1`
|
86 |
+
Commit your code and push it to your GitHub repository
|
87 |
+
|
88 |
+
`Step 2`
|
89 |
+
Create a new Space on Hugging Face, add it as an additional remote to git and force push your code on Spaces:
|
90 |
+
|
91 |
+
```bash
|
92 |
+
git remote add space https://huggingface.co/spaces/HF_USERNAME/SPACE_NAME
|
93 |
+
```
|
94 |
+
|
95 |
+
```bash
|
96 |
+
git push --force space main
|
97 |
+
```
|
98 |
+
|
99 |
+
`Step 3`
|
100 |
+
In the main.yml, add your Hugging Face username and Space name to the variables 'HF_username' and 'HF_space_name'
|
101 |
+
|
102 |
+
`Step 4`
|
103 |
+
Create a new API key on Hugging Face (write) and add it as a secret to your GitHub Repository naming it as 'HF_TOKEN'.
|
104 |
+
|
105 |
+
`Step 5`
|
106 |
+
Trigger the CI/CD pipeline by a push or a pull request to your main branch.
|
107 |
|
108 |
+
## Usage:
|
|
|
|
|
109 |
|
110 |
- A web-based dashboard will open in your default browser.
|
111 |
- Type or paste a text input in the text box provided.
|
112 |
+
- The dashboard will visualise the detected emotions in a set of gauges, with each gauge representing the intensity of a specific emotion category. The gauge colors are based on a predefined color map for each emotion category.
|
113 |
+
- Moreover, the dashboard will display the results from Hate Speech Analysis and Sexism Detection models.
|