# Start from the TGI base image FROM ghcr.io/huggingface/text-generation-inference:2.0 as base COPY ./requirements.txt /code/requirements.txt RUN pip install -r /code/requirements.txt ## Install JupyterLab and plugins #RUN pip install jupyterlab jupyterlab-vim==0.15.1 jupyterlab-vimrc # #RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt # ## Install Visual Studio Code CLI #RUN curl -Lk 'https://code.visualstudio.com/sha/download?build=stable&os=cli-alpine-x64' \ # --output vscode_cli.tar.gz \ # && tar -xvf vscode_cli.tar.gz \ # && chmod +x ./code \ # && mv code /usr/local/bin/ # ## Create a non-root user with UID 1000 RUN useradd -m -u 1000 -s /bin/bash user # ## Create the /data directory and set its ownership RUN mkdir /data && chown user:user /data # ## Switch to the non-root user USER user # ## Set working directory WORKDIR /home/user # ## Add local python bin directory to PATH ENV PATH="/home/user/.local/bin:${PATH}" # ## AWS Sagemaker compatible image ## Assuming this part remains the same from your original Dockerfile #FROM base as sagemaker # #COPY sagemaker-entrypoint.sh entrypoint.sh #RUN chmod +x entrypoint.sh # #ENTRYPOINT ["./entrypoint.sh"] # ## Final image #FROM base # ## Override the ENTRYPOINT ENTRYPOINT [] # ## Switch to the non-root user USER user # ## Set working directory #WORKDIR /home/user # ## Set home to the user's home directory ENV HOME=/home/user \ PATH=/home/user/.local/bin:$PATH \ PYTHONPATH=$HOME/app \ PYTHONUNBUFFERED=1 \ GRADIO_ALLOW_FLAGGING=never \ GRADIO_NUM_PORTS=1 \ GRADIO_SERVER_NAME=0.0.0.0 \ GRADIO_THEME=huggingface \ SYSTEM=spaces # ## Copy the current directory contents into the container at $HOME/app setting the owner to the user COPY --chown=user . $HOME/ # ## Ensure run.sh is executable #RUN chmod +x $HOME/run.sh # ## Set the CMD to run your script #CMD ["/home/user/run.sh"] CMD python /home/user/app.py