File size: 8,147 Bytes
0374441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
import numpy as np
import torch.nn.functional as F

class SLMAdversarialLoss(torch.nn.Module):

    def __init__(self, model, wl, sampler, min_len, max_len, batch_percentage=0.5, skip_update=10, sig=1.5):
        super(SLMAdversarialLoss, self).__init__()
        self.model = model
        self.wl = wl
        self.sampler = sampler
        
        self.min_len = min_len
        self.max_len = max_len
        self.batch_percentage = batch_percentage
        
        self.sig = sig
        self.skip_update = skip_update
        
    def forward(self, iters, y_rec_gt, y_rec_gt_pred, waves, mel_input_length, ref_text, ref_lengths, use_ind, s_trg, ref_s=None):
        text_mask = length_to_mask(ref_lengths).to(ref_text.device)
        bert_dur = self.model.bert(ref_text, attention_mask=(~text_mask).int())
        d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2) 
        
        if use_ind and np.random.rand() < 0.5:
            s_preds = s_trg
        else:
            num_steps = np.random.randint(3, 5)
            if ref_s is not None:
                s_preds = self.sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device), 
                      embedding=bert_dur,
                      embedding_scale=1,
                               features=ref_s, # reference from the same speaker as the embedding
                         embedding_mask_proba=0.1,
                         num_steps=num_steps).squeeze(1)
            else:
                s_preds = self.sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device), 
                      embedding=bert_dur,
                      embedding_scale=1,
                         embedding_mask_proba=0.1,
                         num_steps=num_steps).squeeze(1)
            
        s_dur = s_preds[:, 128:]
        s = s_preds[:, :128]
        
        d, _ = self.model.predictor(d_en, s_dur, 
                                                ref_lengths, 
                                                torch.randn(ref_lengths.shape[0], ref_lengths.max(), 2).to(ref_text.device), 
                                                text_mask)
        
        bib = 0

        output_lengths = []
        attn_preds = []
        
        # differentiable duration modeling
        for _s2s_pred, _text_length in zip(d, ref_lengths):

            _s2s_pred_org = _s2s_pred[:_text_length, :]

            _s2s_pred = torch.sigmoid(_s2s_pred_org)
            _dur_pred = _s2s_pred.sum(axis=-1)

            l = int(torch.round(_s2s_pred.sum()).item())
            t = torch.arange(0, l).expand(l)

            t = torch.arange(0, l).unsqueeze(0).expand((len(_s2s_pred), l)).to(ref_text.device)
            loc = torch.cumsum(_dur_pred, dim=0) - _dur_pred / 2

            h = torch.exp(-0.5 * torch.square(t - (l - loc.unsqueeze(-1))) / (self.sig)**2)

            out = torch.nn.functional.conv1d(_s2s_pred_org.unsqueeze(0), 
                                         h.unsqueeze(1), 
                                         padding=h.shape[-1] - 1, groups=int(_text_length))[..., :l]
            attn_preds.append(F.softmax(out.squeeze(), dim=0))

            output_lengths.append(l)

        max_len = max(output_lengths)
        
        with torch.no_grad():
            t_en = self.model.text_encoder(ref_text, ref_lengths, text_mask)
            
        s2s_attn = torch.zeros(len(ref_lengths), int(ref_lengths.max()), max_len).to(ref_text.device)
        for bib in range(len(output_lengths)):
            s2s_attn[bib, :ref_lengths[bib], :output_lengths[bib]] = attn_preds[bib]

        asr_pred = t_en @ s2s_attn

        _, p_pred = self.model.predictor(d_en, s_dur, 
                                                ref_lengths, 
                                                s2s_attn, 
                                                text_mask)
        
        mel_len = max(int(min(output_lengths) / 2 - 1), self.min_len // 2)
        mel_len = min(mel_len, self.max_len // 2)
        
        # get clips
        
        en = []
        p_en = []
        sp = []
        
        F0_fakes = []
        N_fakes = []
        
        wav = []

        for bib in range(len(output_lengths)):
            mel_length_pred = output_lengths[bib]
            mel_length_gt = int(mel_input_length[bib].item() / 2)
            if mel_length_gt <= mel_len or mel_length_pred <= mel_len:
                continue

            sp.append(s_preds[bib])

            random_start = np.random.randint(0, mel_length_pred - mel_len)
            en.append(asr_pred[bib, :, random_start:random_start+mel_len])
            p_en.append(p_pred[bib, :, random_start:random_start+mel_len])

            # get ground truth clips
            random_start = np.random.randint(0, mel_length_gt - mel_len)
            y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
            wav.append(torch.from_numpy(y).to(ref_text.device))
            
            if len(wav) >= self.batch_percentage * len(waves): # prevent OOM due to longer lengths
                break

        if len(sp) <= 1:
            return None
            
        sp = torch.stack(sp)
        wav = torch.stack(wav).float()
        en = torch.stack(en)
        p_en = torch.stack(p_en)
        
        F0_fake, N_fake = self.model.predictor.F0Ntrain(p_en, sp[:, 128:])
        y_pred = self.model.decoder(en, F0_fake, N_fake, sp[:, :128])
        
        # discriminator loss
        if (iters + 1) % self.skip_update == 0:
            if np.random.randint(0, 2) == 0:
                wav = y_rec_gt_pred
                use_rec = True
            else:
                use_rec = False

            crop_size = min(wav.size(-1), y_pred.size(-1))
            if use_rec: # use reconstructed (shorter lengths), do length invariant regularization
                if wav.size(-1) > y_pred.size(-1):
                    real_GP = wav[:, : , :crop_size]
                    out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze())
                    out_org = self.wl.discriminator_forward(wav.detach().squeeze())
                    loss_reg = F.l1_loss(out_crop, out_org[..., :out_crop.size(-1)])

                    if np.random.randint(0, 2) == 0:
                        d_loss = self.wl.discriminator(real_GP.detach().squeeze(), y_pred.detach().squeeze()).mean()
                    else:
                        d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
                else:
                    real_GP = y_pred[:, : , :crop_size]
                    out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze())
                    out_org = self.wl.discriminator_forward(y_pred.detach().squeeze())
                    loss_reg = F.l1_loss(out_crop, out_org[..., :out_crop.size(-1)])

                    if np.random.randint(0, 2) == 0:
                        d_loss = self.wl.discriminator(wav.detach().squeeze(), real_GP.detach().squeeze()).mean()
                    else:
                        d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
                
                # regularization (ignore length variation)
                d_loss += loss_reg

                out_gt = self.wl.discriminator_forward(y_rec_gt.detach().squeeze())
                out_rec = self.wl.discriminator_forward(y_rec_gt_pred.detach().squeeze())

                # regularization (ignore reconstruction artifacts)
                d_loss += F.l1_loss(out_gt, out_rec)

            else:
                d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
        else:
            d_loss = 0
            
        # generator loss
        gen_loss = self.wl.generator(y_pred.squeeze())
        
        gen_loss = gen_loss.mean()
        
        return d_loss, gen_loss, y_pred.detach().cpu().numpy()
    
def length_to_mask(lengths):
    mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
    mask = torch.gt(mask+1, lengths.unsqueeze(1))
    return mask