File size: 7,272 Bytes
0374441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import math
import torch
from torch import nn
from torch.nn import TransformerEncoder
import torch.nn.functional as F
from .layers import MFCC, Attention, LinearNorm, ConvNorm, ConvBlock

class ASRCNN(nn.Module):
    def __init__(self,
                 input_dim=80,
                 hidden_dim=256,
                 n_token=35,
                 n_layers=6,
                 token_embedding_dim=256,

    ):
        super().__init__()
        self.n_token = n_token
        self.n_down = 1
        self.to_mfcc = MFCC()
        self.init_cnn = ConvNorm(input_dim//2, hidden_dim, kernel_size=7, padding=3, stride=2)
        self.cnns = nn.Sequential(
            *[nn.Sequential(
                ConvBlock(hidden_dim),
                nn.GroupNorm(num_groups=1, num_channels=hidden_dim)
            ) for n in range(n_layers)])
        self.projection = ConvNorm(hidden_dim, hidden_dim // 2)
        self.ctc_linear = nn.Sequential(
            LinearNorm(hidden_dim//2, hidden_dim),
            nn.ReLU(),
            LinearNorm(hidden_dim, n_token))
        self.asr_s2s = ASRS2S(
            embedding_dim=token_embedding_dim,
            hidden_dim=hidden_dim//2,
            n_token=n_token)

    def forward(self, x, src_key_padding_mask=None, text_input=None):
        x = self.to_mfcc(x)
        x = self.init_cnn(x)
        x = self.cnns(x)
        x = self.projection(x)
        x = x.transpose(1, 2)
        ctc_logit = self.ctc_linear(x)
        if text_input is not None:
            _, s2s_logit, s2s_attn = self.asr_s2s(x, src_key_padding_mask, text_input)
            return ctc_logit, s2s_logit, s2s_attn
        else:
            return ctc_logit

    def get_feature(self, x):
        x = self.to_mfcc(x.squeeze(1))
        x = self.init_cnn(x)
        x = self.cnns(x)
        x = self.projection(x)
        return x

    def length_to_mask(self, lengths):
        mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
        mask = torch.gt(mask+1, lengths.unsqueeze(1)).to(lengths.device)
        return mask

    def get_future_mask(self, out_length, unmask_future_steps=0):
        """
        Args:
            out_length (int): returned mask shape is (out_length, out_length).
            unmask_futre_steps (int): unmasking future step size.
        Return:
            mask (torch.BoolTensor): mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
        """
        index_tensor = torch.arange(out_length).unsqueeze(0).expand(out_length, -1)
        mask = torch.gt(index_tensor, index_tensor.T + unmask_future_steps)
        return mask

class ASRS2S(nn.Module):
    def __init__(self,
                 embedding_dim=256,
                 hidden_dim=512,
                 n_location_filters=32,
                 location_kernel_size=63,
                 n_token=40):
        super(ASRS2S, self).__init__()
        self.embedding = nn.Embedding(n_token, embedding_dim)
        val_range = math.sqrt(6 / hidden_dim)
        self.embedding.weight.data.uniform_(-val_range, val_range)

        self.decoder_rnn_dim = hidden_dim
        self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
        self.attention_layer = Attention(
            self.decoder_rnn_dim,
            hidden_dim,
            hidden_dim,
            n_location_filters,
            location_kernel_size
        )
        self.decoder_rnn = nn.LSTMCell(self.decoder_rnn_dim + embedding_dim, self.decoder_rnn_dim)
        self.project_to_hidden = nn.Sequential(
            LinearNorm(self.decoder_rnn_dim * 2, hidden_dim),
            nn.Tanh())
        self.sos = 1
        self.eos = 2

    def initialize_decoder_states(self, memory, mask):
        """
        moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
        """
        B, L, H = memory.shape
        self.decoder_hidden = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
        self.decoder_cell = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
        self.attention_weights = torch.zeros((B, L)).type_as(memory)
        self.attention_weights_cum = torch.zeros((B, L)).type_as(memory)
        self.attention_context = torch.zeros((B, H)).type_as(memory)
        self.memory = memory
        self.processed_memory = self.attention_layer.memory_layer(memory)
        self.mask = mask
        self.unk_index = 3
        self.random_mask = 0.1

    def forward(self, memory, memory_mask, text_input):
        """
        moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
        moemory_mask.shape = (B, L, )
        texts_input.shape = (B, T)
        """
        self.initialize_decoder_states(memory, memory_mask)
        # text random mask
        random_mask = (torch.rand(text_input.shape) < self.random_mask).to(text_input.device)
        _text_input = text_input.clone()
        _text_input.masked_fill_(random_mask, self.unk_index)
        decoder_inputs = self.embedding(_text_input).transpose(0, 1) # -> [T, B, channel]
        start_embedding = self.embedding(
            torch.LongTensor([self.sos]*decoder_inputs.size(1)).to(decoder_inputs.device))
        decoder_inputs = torch.cat((start_embedding.unsqueeze(0), decoder_inputs), dim=0)

        hidden_outputs, logit_outputs, alignments = [], [], []
        while len(hidden_outputs) < decoder_inputs.size(0):

            decoder_input = decoder_inputs[len(hidden_outputs)]
            hidden, logit, attention_weights = self.decode(decoder_input)
            hidden_outputs += [hidden]
            logit_outputs += [logit]
            alignments += [attention_weights]

        hidden_outputs, logit_outputs, alignments = \
            self.parse_decoder_outputs(
                hidden_outputs, logit_outputs, alignments)

        return hidden_outputs, logit_outputs, alignments


    def decode(self, decoder_input):

        cell_input = torch.cat((decoder_input, self.attention_context), -1)
        self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
            cell_input,
            (self.decoder_hidden, self.decoder_cell))

        attention_weights_cat = torch.cat(
            (self.attention_weights.unsqueeze(1),
            self.attention_weights_cum.unsqueeze(1)),dim=1)

        self.attention_context, self.attention_weights = self.attention_layer(
            self.decoder_hidden,
            self.memory,
            self.processed_memory,
            attention_weights_cat,
            self.mask)

        self.attention_weights_cum += self.attention_weights

        hidden_and_context = torch.cat((self.decoder_hidden, self.attention_context), -1)
        hidden = self.project_to_hidden(hidden_and_context)

        # dropout to increasing g
        logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))

        return hidden, logit, self.attention_weights

    def parse_decoder_outputs(self, hidden, logit, alignments):

        # -> [B, T_out + 1, max_time]
        alignments = torch.stack(alignments).transpose(0,1)
        # [T_out + 1, B, n_symbols] -> [B, T_out + 1,  n_symbols]
        logit = torch.stack(logit).transpose(0, 1).contiguous()
        hidden = torch.stack(hidden).transpose(0, 1).contiguous()

        return hidden, logit, alignments