Spaces:
Runtime error
Runtime error
Upload 47 files
Browse files- MeshAnything/miche/LICENSE +674 -0
- MeshAnything/miche/encode.py +73 -0
- MeshAnything/miche/michelangelo/__init__.py +1 -0
- MeshAnything/miche/michelangelo/data/__init__.py +1 -0
- MeshAnything/miche/michelangelo/data/templates.json +69 -0
- MeshAnything/miche/michelangelo/data/transforms.py +407 -0
- MeshAnything/miche/michelangelo/data/utils.py +59 -0
- MeshAnything/miche/michelangelo/graphics/__init__.py +1 -0
- MeshAnything/miche/michelangelo/graphics/primitives/__init__.py +9 -0
- MeshAnything/miche/michelangelo/graphics/primitives/mesh.py +114 -0
- MeshAnything/miche/michelangelo/graphics/primitives/volume.py +21 -0
- MeshAnything/miche/michelangelo/models/__init__.py +1 -0
- MeshAnything/miche/michelangelo/models/asl_diffusion/__init__.py +1 -0
- MeshAnything/miche/michelangelo/models/asl_diffusion/asl_diffuser_pl_module.py +483 -0
- MeshAnything/miche/michelangelo/models/asl_diffusion/asl_udt.py +104 -0
- MeshAnything/miche/michelangelo/models/asl_diffusion/base.py +13 -0
- MeshAnything/miche/michelangelo/models/asl_diffusion/clip_asl_diffuser_pl_module.py +393 -0
- MeshAnything/miche/michelangelo/models/asl_diffusion/inference_utils.py +80 -0
- MeshAnything/miche/michelangelo/models/conditional_encoders/__init__.py +3 -0
- MeshAnything/miche/michelangelo/models/conditional_encoders/clip.py +89 -0
- MeshAnything/miche/michelangelo/models/conditional_encoders/encoder_factory.py +562 -0
- MeshAnything/miche/michelangelo/models/modules/__init__.py +3 -0
- MeshAnything/miche/michelangelo/models/modules/checkpoint.py +69 -0
- MeshAnything/miche/michelangelo/models/modules/diffusion_transformer.py +218 -0
- MeshAnything/miche/michelangelo/models/modules/distributions.py +100 -0
- MeshAnything/miche/michelangelo/models/modules/embedder.py +213 -0
- MeshAnything/miche/michelangelo/models/modules/transformer_blocks.py +286 -0
- MeshAnything/miche/michelangelo/models/modules/transformer_vit.py +308 -0
- MeshAnything/miche/michelangelo/models/tsal/__init__.py +1 -0
- MeshAnything/miche/michelangelo/models/tsal/asl_pl_module.py +395 -0
- MeshAnything/miche/michelangelo/models/tsal/clip_asl_module.py +118 -0
- MeshAnything/miche/michelangelo/models/tsal/inference_utils.py +80 -0
- MeshAnything/miche/michelangelo/models/tsal/loss.py +303 -0
- MeshAnything/miche/michelangelo/models/tsal/sal_perceiver.py +423 -0
- MeshAnything/miche/michelangelo/models/tsal/sal_pl_module.py +290 -0
- MeshAnything/miche/michelangelo/models/tsal/tsal_base.py +120 -0
- MeshAnything/miche/michelangelo/utils/__init__.py +3 -0
- MeshAnything/miche/michelangelo/utils/eval.py +12 -0
- MeshAnything/miche/michelangelo/utils/io.py +47 -0
- MeshAnything/miche/michelangelo/utils/misc.py +83 -0
- MeshAnything/miche/michelangelo/utils/visualizers/__init__.py +1 -0
- MeshAnything/miche/michelangelo/utils/visualizers/color_util.py +43 -0
- MeshAnything/miche/michelangelo/utils/visualizers/html_util.py +49 -0
- MeshAnything/miche/michelangelo/utils/visualizers/pythreejs_viewer.py +534 -0
- MeshAnything/miche/shapevae-256.yaml +46 -0
- MeshAnything/models/meshanything.py +223 -0
- MeshAnything/models/shape_opt.py +464 -0
MeshAnything/miche/LICENSE
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 29 June 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works.
|
12 |
+
|
13 |
+
The licenses for most software and other practical works are designed
|
14 |
+
to take away your freedom to share and change the works. By contrast,
|
15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
16 |
+
share and change all versions of a program--to make sure it remains free
|
17 |
+
software for all its users. We, the Free Software Foundation, use the
|
18 |
+
GNU General Public License for most of our software; it applies also to
|
19 |
+
any other work released this way by its authors. You can apply it to
|
20 |
+
your programs, too.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
To protect your rights, we need to prevent others from denying you
|
30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
+
certain responsibilities if you distribute copies of the software, or if
|
32 |
+
you modify it: responsibilities to respect the freedom of others.
|
33 |
+
|
34 |
+
For example, if you distribute copies of such a program, whether
|
35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
36 |
+
freedoms that you received. You must make sure that they, too, receive
|
37 |
+
or can get the source code. And you must show them these terms so they
|
38 |
+
know their rights.
|
39 |
+
|
40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
43 |
+
|
44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
45 |
+
that there is no warranty for this free software. For both users' and
|
46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
47 |
+
changed, so that their problems will not be attributed erroneously to
|
48 |
+
authors of previous versions.
|
49 |
+
|
50 |
+
Some devices are designed to deny users access to install or run
|
51 |
+
modified versions of the software inside them, although the manufacturer
|
52 |
+
can do so. This is fundamentally incompatible with the aim of
|
53 |
+
protecting users' freedom to change the software. The systematic
|
54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
+
have designed this version of the GPL to prohibit the practice for those
|
57 |
+
products. If such problems arise substantially in other domains, we
|
58 |
+
stand ready to extend this provision to those domains in future versions
|
59 |
+
of the GPL, as needed to protect the freedom of users.
|
60 |
+
|
61 |
+
Finally, every program is threatened constantly by software patents.
|
62 |
+
States should not allow patents to restrict development and use of
|
63 |
+
software on general-purpose computers, but in those that do, we wish to
|
64 |
+
avoid the special danger that patents applied to a free program could
|
65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
+
patents cannot be used to render the program non-free.
|
67 |
+
|
68 |
+
The precise terms and conditions for copying, distribution and
|
69 |
+
modification follow.
|
70 |
+
|
71 |
+
TERMS AND CONDITIONS
|
72 |
+
|
73 |
+
0. Definitions.
|
74 |
+
|
75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
76 |
+
|
77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
+
works, such as semiconductor masks.
|
79 |
+
|
80 |
+
"The Program" refers to any copyrightable work licensed under this
|
81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
+
"recipients" may be individuals or organizations.
|
83 |
+
|
84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
+
in a fashion requiring copyright permission, other than the making of an
|
86 |
+
exact copy. The resulting work is called a "modified version" of the
|
87 |
+
earlier work or a work "based on" the earlier work.
|
88 |
+
|
89 |
+
A "covered work" means either the unmodified Program or a work based
|
90 |
+
on the Program.
|
91 |
+
|
92 |
+
To "propagate" a work means to do anything with it that, without
|
93 |
+
permission, would make you directly or secondarily liable for
|
94 |
+
infringement under applicable copyright law, except executing it on a
|
95 |
+
computer or modifying a private copy. Propagation includes copying,
|
96 |
+
distribution (with or without modification), making available to the
|
97 |
+
public, and in some countries other activities as well.
|
98 |
+
|
99 |
+
To "convey" a work means any kind of propagation that enables other
|
100 |
+
parties to make or receive copies. Mere interaction with a user through
|
101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
102 |
+
|
103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
+
to the extent that it includes a convenient and prominently visible
|
105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
+
tells the user that there is no warranty for the work (except to the
|
107 |
+
extent that warranties are provided), that licensees may convey the
|
108 |
+
work under this License, and how to view a copy of this License. If
|
109 |
+
the interface presents a list of user commands or options, such as a
|
110 |
+
menu, a prominent item in the list meets this criterion.
|
111 |
+
|
112 |
+
1. Source Code.
|
113 |
+
|
114 |
+
The "source code" for a work means the preferred form of the work
|
115 |
+
for making modifications to it. "Object code" means any non-source
|
116 |
+
form of a work.
|
117 |
+
|
118 |
+
A "Standard Interface" means an interface that either is an official
|
119 |
+
standard defined by a recognized standards body, or, in the case of
|
120 |
+
interfaces specified for a particular programming language, one that
|
121 |
+
is widely used among developers working in that language.
|
122 |
+
|
123 |
+
The "System Libraries" of an executable work include anything, other
|
124 |
+
than the work as a whole, that (a) is included in the normal form of
|
125 |
+
packaging a Major Component, but which is not part of that Major
|
126 |
+
Component, and (b) serves only to enable use of the work with that
|
127 |
+
Major Component, or to implement a Standard Interface for which an
|
128 |
+
implementation is available to the public in source code form. A
|
129 |
+
"Major Component", in this context, means a major essential component
|
130 |
+
(kernel, window system, and so on) of the specific operating system
|
131 |
+
(if any) on which the executable work runs, or a compiler used to
|
132 |
+
produce the work, or an object code interpreter used to run it.
|
133 |
+
|
134 |
+
The "Corresponding Source" for a work in object code form means all
|
135 |
+
the source code needed to generate, install, and (for an executable
|
136 |
+
work) run the object code and to modify the work, including scripts to
|
137 |
+
control those activities. However, it does not include the work's
|
138 |
+
System Libraries, or general-purpose tools or generally available free
|
139 |
+
programs which are used unmodified in performing those activities but
|
140 |
+
which are not part of the work. For example, Corresponding Source
|
141 |
+
includes interface definition files associated with source files for
|
142 |
+
the work, and the source code for shared libraries and dynamically
|
143 |
+
linked subprograms that the work is specifically designed to require,
|
144 |
+
such as by intimate data communication or control flow between those
|
145 |
+
subprograms and other parts of the work.
|
146 |
+
|
147 |
+
The Corresponding Source need not include anything that users
|
148 |
+
can regenerate automatically from other parts of the Corresponding
|
149 |
+
Source.
|
150 |
+
|
151 |
+
The Corresponding Source for a work in source code form is that
|
152 |
+
same work.
|
153 |
+
|
154 |
+
2. Basic Permissions.
|
155 |
+
|
156 |
+
All rights granted under this License are granted for the term of
|
157 |
+
copyright on the Program, and are irrevocable provided the stated
|
158 |
+
conditions are met. This License explicitly affirms your unlimited
|
159 |
+
permission to run the unmodified Program. The output from running a
|
160 |
+
covered work is covered by this License only if the output, given its
|
161 |
+
content, constitutes a covered work. This License acknowledges your
|
162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
+
|
164 |
+
You may make, run and propagate covered works that you do not
|
165 |
+
convey, without conditions so long as your license otherwise remains
|
166 |
+
in force. You may convey covered works to others for the sole purpose
|
167 |
+
of having them make modifications exclusively for you, or provide you
|
168 |
+
with facilities for running those works, provided that you comply with
|
169 |
+
the terms of this License in conveying all material for which you do
|
170 |
+
not control copyright. Those thus making or running the covered works
|
171 |
+
for you must do so exclusively on your behalf, under your direction
|
172 |
+
and control, on terms that prohibit them from making any copies of
|
173 |
+
your copyrighted material outside their relationship with you.
|
174 |
+
|
175 |
+
Conveying under any other circumstances is permitted solely under
|
176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
+
makes it unnecessary.
|
178 |
+
|
179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
+
|
181 |
+
No covered work shall be deemed part of an effective technological
|
182 |
+
measure under any applicable law fulfilling obligations under article
|
183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
+
similar laws prohibiting or restricting circumvention of such
|
185 |
+
measures.
|
186 |
+
|
187 |
+
When you convey a covered work, you waive any legal power to forbid
|
188 |
+
circumvention of technological measures to the extent such circumvention
|
189 |
+
is effected by exercising rights under this License with respect to
|
190 |
+
the covered work, and you disclaim any intention to limit operation or
|
191 |
+
modification of the work as a means of enforcing, against the work's
|
192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
193 |
+
technological measures.
|
194 |
+
|
195 |
+
4. Conveying Verbatim Copies.
|
196 |
+
|
197 |
+
You may convey verbatim copies of the Program's source code as you
|
198 |
+
receive it, in any medium, provided that you conspicuously and
|
199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
200 |
+
keep intact all notices stating that this License and any
|
201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
+
keep intact all notices of the absence of any warranty; and give all
|
203 |
+
recipients a copy of this License along with the Program.
|
204 |
+
|
205 |
+
You may charge any price or no price for each copy that you convey,
|
206 |
+
and you may offer support or warranty protection for a fee.
|
207 |
+
|
208 |
+
5. Conveying Modified Source Versions.
|
209 |
+
|
210 |
+
You may convey a work based on the Program, or the modifications to
|
211 |
+
produce it from the Program, in the form of source code under the
|
212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
213 |
+
|
214 |
+
a) The work must carry prominent notices stating that you modified
|
215 |
+
it, and giving a relevant date.
|
216 |
+
|
217 |
+
b) The work must carry prominent notices stating that it is
|
218 |
+
released under this License and any conditions added under section
|
219 |
+
7. This requirement modifies the requirement in section 4 to
|
220 |
+
"keep intact all notices".
|
221 |
+
|
222 |
+
c) You must license the entire work, as a whole, under this
|
223 |
+
License to anyone who comes into possession of a copy. This
|
224 |
+
License will therefore apply, along with any applicable section 7
|
225 |
+
additional terms, to the whole of the work, and all its parts,
|
226 |
+
regardless of how they are packaged. This License gives no
|
227 |
+
permission to license the work in any other way, but it does not
|
228 |
+
invalidate such permission if you have separately received it.
|
229 |
+
|
230 |
+
d) If the work has interactive user interfaces, each must display
|
231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
233 |
+
work need not make them do so.
|
234 |
+
|
235 |
+
A compilation of a covered work with other separate and independent
|
236 |
+
works, which are not by their nature extensions of the covered work,
|
237 |
+
and which are not combined with it such as to form a larger program,
|
238 |
+
in or on a volume of a storage or distribution medium, is called an
|
239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
240 |
+
used to limit the access or legal rights of the compilation's users
|
241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
242 |
+
in an aggregate does not cause this License to apply to the other
|
243 |
+
parts of the aggregate.
|
244 |
+
|
245 |
+
6. Conveying Non-Source Forms.
|
246 |
+
|
247 |
+
You may convey a covered work in object code form under the terms
|
248 |
+
of sections 4 and 5, provided that you also convey the
|
249 |
+
machine-readable Corresponding Source under the terms of this License,
|
250 |
+
in one of these ways:
|
251 |
+
|
252 |
+
a) Convey the object code in, or embodied in, a physical product
|
253 |
+
(including a physical distribution medium), accompanied by the
|
254 |
+
Corresponding Source fixed on a durable physical medium
|
255 |
+
customarily used for software interchange.
|
256 |
+
|
257 |
+
b) Convey the object code in, or embodied in, a physical product
|
258 |
+
(including a physical distribution medium), accompanied by a
|
259 |
+
written offer, valid for at least three years and valid for as
|
260 |
+
long as you offer spare parts or customer support for that product
|
261 |
+
model, to give anyone who possesses the object code either (1) a
|
262 |
+
copy of the Corresponding Source for all the software in the
|
263 |
+
product that is covered by this License, on a durable physical
|
264 |
+
medium customarily used for software interchange, for a price no
|
265 |
+
more than your reasonable cost of physically performing this
|
266 |
+
conveying of source, or (2) access to copy the
|
267 |
+
Corresponding Source from a network server at no charge.
|
268 |
+
|
269 |
+
c) Convey individual copies of the object code with a copy of the
|
270 |
+
written offer to provide the Corresponding Source. This
|
271 |
+
alternative is allowed only occasionally and noncommercially, and
|
272 |
+
only if you received the object code with such an offer, in accord
|
273 |
+
with subsection 6b.
|
274 |
+
|
275 |
+
d) Convey the object code by offering access from a designated
|
276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
277 |
+
Corresponding Source in the same way through the same place at no
|
278 |
+
further charge. You need not require recipients to copy the
|
279 |
+
Corresponding Source along with the object code. If the place to
|
280 |
+
copy the object code is a network server, the Corresponding Source
|
281 |
+
may be on a different server (operated by you or a third party)
|
282 |
+
that supports equivalent copying facilities, provided you maintain
|
283 |
+
clear directions next to the object code saying where to find the
|
284 |
+
Corresponding Source. Regardless of what server hosts the
|
285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
286 |
+
available for as long as needed to satisfy these requirements.
|
287 |
+
|
288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
+
you inform other peers where the object code and Corresponding
|
290 |
+
Source of the work are being offered to the general public at no
|
291 |
+
charge under subsection 6d.
|
292 |
+
|
293 |
+
A separable portion of the object code, whose source code is excluded
|
294 |
+
from the Corresponding Source as a System Library, need not be
|
295 |
+
included in conveying the object code work.
|
296 |
+
|
297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
298 |
+
tangible personal property which is normally used for personal, family,
|
299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
+
product received by a particular user, "normally used" refers to a
|
303 |
+
typical or common use of that class of product, regardless of the status
|
304 |
+
of the particular user or of the way in which the particular user
|
305 |
+
actually uses, or expects or is expected to use, the product. A product
|
306 |
+
is a consumer product regardless of whether the product has substantial
|
307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
+
the only significant mode of use of the product.
|
309 |
+
|
310 |
+
"Installation Information" for a User Product means any methods,
|
311 |
+
procedures, authorization keys, or other information required to install
|
312 |
+
and execute modified versions of a covered work in that User Product from
|
313 |
+
a modified version of its Corresponding Source. The information must
|
314 |
+
suffice to ensure that the continued functioning of the modified object
|
315 |
+
code is in no case prevented or interfered with solely because
|
316 |
+
modification has been made.
|
317 |
+
|
318 |
+
If you convey an object code work under this section in, or with, or
|
319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
320 |
+
part of a transaction in which the right of possession and use of the
|
321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
322 |
+
fixed term (regardless of how the transaction is characterized), the
|
323 |
+
Corresponding Source conveyed under this section must be accompanied
|
324 |
+
by the Installation Information. But this requirement does not apply
|
325 |
+
if neither you nor any third party retains the ability to install
|
326 |
+
modified object code on the User Product (for example, the work has
|
327 |
+
been installed in ROM).
|
328 |
+
|
329 |
+
The requirement to provide Installation Information does not include a
|
330 |
+
requirement to continue to provide support service, warranty, or updates
|
331 |
+
for a work that has been modified or installed by the recipient, or for
|
332 |
+
the User Product in which it has been modified or installed. Access to a
|
333 |
+
network may be denied when the modification itself materially and
|
334 |
+
adversely affects the operation of the network or violates the rules and
|
335 |
+
protocols for communication across the network.
|
336 |
+
|
337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
338 |
+
in accord with this section must be in a format that is publicly
|
339 |
+
documented (and with an implementation available to the public in
|
340 |
+
source code form), and must require no special password or key for
|
341 |
+
unpacking, reading or copying.
|
342 |
+
|
343 |
+
7. Additional Terms.
|
344 |
+
|
345 |
+
"Additional permissions" are terms that supplement the terms of this
|
346 |
+
License by making exceptions from one or more of its conditions.
|
347 |
+
Additional permissions that are applicable to the entire Program shall
|
348 |
+
be treated as though they were included in this License, to the extent
|
349 |
+
that they are valid under applicable law. If additional permissions
|
350 |
+
apply only to part of the Program, that part may be used separately
|
351 |
+
under those permissions, but the entire Program remains governed by
|
352 |
+
this License without regard to the additional permissions.
|
353 |
+
|
354 |
+
When you convey a copy of a covered work, you may at your option
|
355 |
+
remove any additional permissions from that copy, or from any part of
|
356 |
+
it. (Additional permissions may be written to require their own
|
357 |
+
removal in certain cases when you modify the work.) You may place
|
358 |
+
additional permissions on material, added by you to a covered work,
|
359 |
+
for which you have or can give appropriate copyright permission.
|
360 |
+
|
361 |
+
Notwithstanding any other provision of this License, for material you
|
362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
+
that material) supplement the terms of this License with terms:
|
364 |
+
|
365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
366 |
+
terms of sections 15 and 16 of this License; or
|
367 |
+
|
368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
369 |
+
author attributions in that material or in the Appropriate Legal
|
370 |
+
Notices displayed by works containing it; or
|
371 |
+
|
372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
+
requiring that modified versions of such material be marked in
|
374 |
+
reasonable ways as different from the original version; or
|
375 |
+
|
376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
+
authors of the material; or
|
378 |
+
|
379 |
+
e) Declining to grant rights under trademark law for use of some
|
380 |
+
trade names, trademarks, or service marks; or
|
381 |
+
|
382 |
+
f) Requiring indemnification of licensors and authors of that
|
383 |
+
material by anyone who conveys the material (or modified versions of
|
384 |
+
it) with contractual assumptions of liability to the recipient, for
|
385 |
+
any liability that these contractual assumptions directly impose on
|
386 |
+
those licensors and authors.
|
387 |
+
|
388 |
+
All other non-permissive additional terms are considered "further
|
389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
390 |
+
received it, or any part of it, contains a notice stating that it is
|
391 |
+
governed by this License along with a term that is a further
|
392 |
+
restriction, you may remove that term. If a license document contains
|
393 |
+
a further restriction but permits relicensing or conveying under this
|
394 |
+
License, you may add to a covered work material governed by the terms
|
395 |
+
of that license document, provided that the further restriction does
|
396 |
+
not survive such relicensing or conveying.
|
397 |
+
|
398 |
+
If you add terms to a covered work in accord with this section, you
|
399 |
+
must place, in the relevant source files, a statement of the
|
400 |
+
additional terms that apply to those files, or a notice indicating
|
401 |
+
where to find the applicable terms.
|
402 |
+
|
403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
+
form of a separately written license, or stated as exceptions;
|
405 |
+
the above requirements apply either way.
|
406 |
+
|
407 |
+
8. Termination.
|
408 |
+
|
409 |
+
You may not propagate or modify a covered work except as expressly
|
410 |
+
provided under this License. Any attempt otherwise to propagate or
|
411 |
+
modify it is void, and will automatically terminate your rights under
|
412 |
+
this License (including any patent licenses granted under the third
|
413 |
+
paragraph of section 11).
|
414 |
+
|
415 |
+
However, if you cease all violation of this License, then your
|
416 |
+
license from a particular copyright holder is reinstated (a)
|
417 |
+
provisionally, unless and until the copyright holder explicitly and
|
418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
419 |
+
holder fails to notify you of the violation by some reasonable means
|
420 |
+
prior to 60 days after the cessation.
|
421 |
+
|
422 |
+
Moreover, your license from a particular copyright holder is
|
423 |
+
reinstated permanently if the copyright holder notifies you of the
|
424 |
+
violation by some reasonable means, this is the first time you have
|
425 |
+
received notice of violation of this License (for any work) from that
|
426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
427 |
+
your receipt of the notice.
|
428 |
+
|
429 |
+
Termination of your rights under this section does not terminate the
|
430 |
+
licenses of parties who have received copies or rights from you under
|
431 |
+
this License. If your rights have been terminated and not permanently
|
432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
433 |
+
material under section 10.
|
434 |
+
|
435 |
+
9. Acceptance Not Required for Having Copies.
|
436 |
+
|
437 |
+
You are not required to accept this License in order to receive or
|
438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
+
to receive a copy likewise does not require acceptance. However,
|
441 |
+
nothing other than this License grants you permission to propagate or
|
442 |
+
modify any covered work. These actions infringe copyright if you do
|
443 |
+
not accept this License. Therefore, by modifying or propagating a
|
444 |
+
covered work, you indicate your acceptance of this License to do so.
|
445 |
+
|
446 |
+
10. Automatic Licensing of Downstream Recipients.
|
447 |
+
|
448 |
+
Each time you convey a covered work, the recipient automatically
|
449 |
+
receives a license from the original licensors, to run, modify and
|
450 |
+
propagate that work, subject to this License. You are not responsible
|
451 |
+
for enforcing compliance by third parties with this License.
|
452 |
+
|
453 |
+
An "entity transaction" is a transaction transferring control of an
|
454 |
+
organization, or substantially all assets of one, or subdividing an
|
455 |
+
organization, or merging organizations. If propagation of a covered
|
456 |
+
work results from an entity transaction, each party to that
|
457 |
+
transaction who receives a copy of the work also receives whatever
|
458 |
+
licenses to the work the party's predecessor in interest had or could
|
459 |
+
give under the previous paragraph, plus a right to possession of the
|
460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
461 |
+
the predecessor has it or can get it with reasonable efforts.
|
462 |
+
|
463 |
+
You may not impose any further restrictions on the exercise of the
|
464 |
+
rights granted or affirmed under this License. For example, you may
|
465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
466 |
+
rights granted under this License, and you may not initiate litigation
|
467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
+
any patent claim is infringed by making, using, selling, offering for
|
469 |
+
sale, or importing the Program or any portion of it.
|
470 |
+
|
471 |
+
11. Patents.
|
472 |
+
|
473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
474 |
+
License of the Program or a work on which the Program is based. The
|
475 |
+
work thus licensed is called the contributor's "contributor version".
|
476 |
+
|
477 |
+
A contributor's "essential patent claims" are all patent claims
|
478 |
+
owned or controlled by the contributor, whether already acquired or
|
479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
+
by this License, of making, using, or selling its contributor version,
|
481 |
+
but do not include claims that would be infringed only as a
|
482 |
+
consequence of further modification of the contributor version. For
|
483 |
+
purposes of this definition, "control" includes the right to grant
|
484 |
+
patent sublicenses in a manner consistent with the requirements of
|
485 |
+
this License.
|
486 |
+
|
487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
+
patent license under the contributor's essential patent claims, to
|
489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
+
propagate the contents of its contributor version.
|
491 |
+
|
492 |
+
In the following three paragraphs, a "patent license" is any express
|
493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
494 |
+
(such as an express permission to practice a patent or covenant not to
|
495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
496 |
+
party means to make such an agreement or commitment not to enforce a
|
497 |
+
patent against the party.
|
498 |
+
|
499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
500 |
+
and the Corresponding Source of the work is not available for anyone
|
501 |
+
to copy, free of charge and under the terms of this License, through a
|
502 |
+
publicly available network server or other readily accessible means,
|
503 |
+
then you must either (1) cause the Corresponding Source to be so
|
504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
506 |
+
consistent with the requirements of this License, to extend the patent
|
507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
508 |
+
actual knowledge that, but for the patent license, your conveying the
|
509 |
+
covered work in a country, or your recipient's use of the covered work
|
510 |
+
in a country, would infringe one or more identifiable patents in that
|
511 |
+
country that you have reason to believe are valid.
|
512 |
+
|
513 |
+
If, pursuant to or in connection with a single transaction or
|
514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
+
covered work, and grant a patent license to some of the parties
|
516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
517 |
+
or convey a specific copy of the covered work, then the patent license
|
518 |
+
you grant is automatically extended to all recipients of the covered
|
519 |
+
work and works based on it.
|
520 |
+
|
521 |
+
A patent license is "discriminatory" if it does not include within
|
522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
524 |
+
specifically granted under this License. You may not convey a covered
|
525 |
+
work if you are a party to an arrangement with a third party that is
|
526 |
+
in the business of distributing software, under which you make payment
|
527 |
+
to the third party based on the extent of your activity of conveying
|
528 |
+
the work, and under which the third party grants, to any of the
|
529 |
+
parties who would receive the covered work from you, a discriminatory
|
530 |
+
patent license (a) in connection with copies of the covered work
|
531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
+
for and in connection with specific products or compilations that
|
533 |
+
contain the covered work, unless you entered into that arrangement,
|
534 |
+
or that patent license was granted, prior to 28 March 2007.
|
535 |
+
|
536 |
+
Nothing in this License shall be construed as excluding or limiting
|
537 |
+
any implied license or other defenses to infringement that may
|
538 |
+
otherwise be available to you under applicable patent law.
|
539 |
+
|
540 |
+
12. No Surrender of Others' Freedom.
|
541 |
+
|
542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
543 |
+
otherwise) that contradict the conditions of this License, they do not
|
544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
546 |
+
License and any other pertinent obligations, then as a consequence you may
|
547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
+
to collect a royalty for further conveying from those to whom you convey
|
549 |
+
the Program, the only way you could satisfy both those terms and this
|
550 |
+
License would be to refrain entirely from conveying the Program.
|
551 |
+
|
552 |
+
13. Use with the GNU Affero General Public License.
|
553 |
+
|
554 |
+
Notwithstanding any other provision of this License, you have
|
555 |
+
permission to link or combine any covered work with a work licensed
|
556 |
+
under version 3 of the GNU Affero General Public License into a single
|
557 |
+
combined work, and to convey the resulting work. The terms of this
|
558 |
+
License will continue to apply to the part which is the covered work,
|
559 |
+
but the special requirements of the GNU Affero General Public License,
|
560 |
+
section 13, concerning interaction through a network will apply to the
|
561 |
+
combination as such.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU General Public License from time to time. Such new versions will
|
567 |
+
be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU General Public License
|
648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If the program does terminal interaction, make it output a short
|
653 |
+
notice like this when it starts in an interactive mode:
|
654 |
+
|
655 |
+
<program> Copyright (C) <year> <name of author>
|
656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
+
This is free software, and you are welcome to redistribute it
|
658 |
+
under certain conditions; type `show c' for details.
|
659 |
+
|
660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
+
parts of the General Public License. Of course, your program's commands
|
662 |
+
might be different; for a GUI interface, you would use an "about box".
|
663 |
+
|
664 |
+
You should also get your employer (if you work as a programmer) or school,
|
665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
+
<https://www.gnu.org/licenses/>.
|
668 |
+
|
669 |
+
The GNU General Public License does not permit incorporating your program
|
670 |
+
into proprietary programs. If your program is a subroutine library, you
|
671 |
+
may consider it more useful to permit linking proprietary applications with
|
672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
+
Public License instead of this License. But first, please read
|
674 |
+
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
MeshAnything/miche/encode.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import argparse
|
3 |
+
from omegaconf import OmegaConf
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from .michelangelo.utils.misc import instantiate_from_config
|
7 |
+
|
8 |
+
def load_surface(fp):
|
9 |
+
|
10 |
+
with np.load(fp) as input_pc:
|
11 |
+
surface = input_pc['points']
|
12 |
+
normal = input_pc['normals']
|
13 |
+
|
14 |
+
rng = np.random.default_rng()
|
15 |
+
ind = rng.choice(surface.shape[0], 4096, replace=False)
|
16 |
+
surface = torch.FloatTensor(surface[ind])
|
17 |
+
normal = torch.FloatTensor(normal[ind])
|
18 |
+
|
19 |
+
surface = torch.cat([surface, normal], dim=-1).unsqueeze(0).cuda()
|
20 |
+
|
21 |
+
return surface
|
22 |
+
|
23 |
+
def reconstruction(args, model, bounds=(-1.25, -1.25, -1.25, 1.25, 1.25, 1.25), octree_depth=7, num_chunks=10000):
|
24 |
+
|
25 |
+
surface = load_surface(args.pointcloud_path)
|
26 |
+
# old_surface = surface.clone()
|
27 |
+
|
28 |
+
# surface[0,:,0]*=-1
|
29 |
+
# surface[0,:,1]*=-1
|
30 |
+
surface[0,:,2]*=-1
|
31 |
+
|
32 |
+
# encoding
|
33 |
+
shape_embed, shape_latents = model.model.encode_shape_embed(surface, return_latents=True)
|
34 |
+
shape_zq, posterior = model.model.shape_model.encode_kl_embed(shape_latents)
|
35 |
+
|
36 |
+
# decoding
|
37 |
+
latents = model.model.shape_model.decode(shape_zq)
|
38 |
+
# geometric_func = partial(model.model.shape_model.query_geometry, latents=latents)
|
39 |
+
|
40 |
+
return 0
|
41 |
+
|
42 |
+
def load_model(ckpt_path="MeshAnything/miche/shapevae-256.ckpt"):
|
43 |
+
model_config = OmegaConf.load("MeshAnything/miche/shapevae-256.yaml")
|
44 |
+
# print(model_config)
|
45 |
+
if hasattr(model_config, "model"):
|
46 |
+
model_config = model_config.model
|
47 |
+
|
48 |
+
model = instantiate_from_config(model_config, ckpt_path=ckpt_path)
|
49 |
+
model = model.cuda()
|
50 |
+
model = model.eval()
|
51 |
+
|
52 |
+
return model
|
53 |
+
if __name__ == "__main__":
|
54 |
+
'''
|
55 |
+
1. Reconstruct point cloud
|
56 |
+
2. Image-conditioned generation
|
57 |
+
3. Text-conditioned generation
|
58 |
+
'''
|
59 |
+
parser = argparse.ArgumentParser()
|
60 |
+
parser.add_argument("--config_path", type=str, required=True)
|
61 |
+
parser.add_argument("--ckpt_path", type=str, required=True)
|
62 |
+
parser.add_argument("--pointcloud_path", type=str, default='./example_data/surface.npz', help='Path to the input point cloud')
|
63 |
+
parser.add_argument("--image_path", type=str, help='Path to the input image')
|
64 |
+
parser.add_argument("--text", type=str, help='Input text within a format: A 3D model of motorcar; Porsche 911.')
|
65 |
+
parser.add_argument("--output_dir", type=str, default='./output')
|
66 |
+
parser.add_argument("-s", "--seed", type=int, default=0)
|
67 |
+
args = parser.parse_args()
|
68 |
+
|
69 |
+
print(f'-----------------------------------------------------------------------------')
|
70 |
+
print(f'>>> Output directory: {args.output_dir}')
|
71 |
+
print(f'-----------------------------------------------------------------------------')
|
72 |
+
|
73 |
+
reconstruction(args, load_model(args))
|
MeshAnything/miche/michelangelo/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
MeshAnything/miche/michelangelo/data/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
MeshAnything/miche/michelangelo/data/templates.json
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"shape": [
|
3 |
+
"a point cloud model of {}.",
|
4 |
+
"There is a {} in the scene.",
|
5 |
+
"There is the {} in the scene.",
|
6 |
+
"a photo of a {} in the scene.",
|
7 |
+
"a photo of the {} in the scene.",
|
8 |
+
"a photo of one {} in the scene.",
|
9 |
+
"itap of a {}.",
|
10 |
+
"itap of my {}.",
|
11 |
+
"itap of the {}.",
|
12 |
+
"a photo of a {}.",
|
13 |
+
"a photo of my {}.",
|
14 |
+
"a photo of the {}.",
|
15 |
+
"a photo of one {}.",
|
16 |
+
"a photo of many {}.",
|
17 |
+
"a good photo of a {}.",
|
18 |
+
"a good photo of the {}.",
|
19 |
+
"a bad photo of a {}.",
|
20 |
+
"a bad photo of the {}.",
|
21 |
+
"a photo of a nice {}.",
|
22 |
+
"a photo of the nice {}.",
|
23 |
+
"a photo of a cool {}.",
|
24 |
+
"a photo of the cool {}.",
|
25 |
+
"a photo of a weird {}.",
|
26 |
+
"a photo of the weird {}.",
|
27 |
+
"a photo of a small {}.",
|
28 |
+
"a photo of the small {}.",
|
29 |
+
"a photo of a large {}.",
|
30 |
+
"a photo of the large {}.",
|
31 |
+
"a photo of a clean {}.",
|
32 |
+
"a photo of the clean {}.",
|
33 |
+
"a photo of a dirty {}.",
|
34 |
+
"a photo of the dirty {}.",
|
35 |
+
"a bright photo of a {}.",
|
36 |
+
"a bright photo of the {}.",
|
37 |
+
"a dark photo of a {}.",
|
38 |
+
"a dark photo of the {}.",
|
39 |
+
"a photo of a hard to see {}.",
|
40 |
+
"a photo of the hard to see {}.",
|
41 |
+
"a low resolution photo of a {}.",
|
42 |
+
"a low resolution photo of the {}.",
|
43 |
+
"a cropped photo of a {}.",
|
44 |
+
"a cropped photo of the {}.",
|
45 |
+
"a close-up photo of a {}.",
|
46 |
+
"a close-up photo of the {}.",
|
47 |
+
"a jpeg corrupted photo of a {}.",
|
48 |
+
"a jpeg corrupted photo of the {}.",
|
49 |
+
"a blurry photo of a {}.",
|
50 |
+
"a blurry photo of the {}.",
|
51 |
+
"a pixelated photo of a {}.",
|
52 |
+
"a pixelated photo of the {}.",
|
53 |
+
"a black and white photo of the {}.",
|
54 |
+
"a black and white photo of a {}",
|
55 |
+
"a plastic {}.",
|
56 |
+
"the plastic {}.",
|
57 |
+
"a toy {}.",
|
58 |
+
"the toy {}.",
|
59 |
+
"a plushie {}.",
|
60 |
+
"the plushie {}.",
|
61 |
+
"a cartoon {}.",
|
62 |
+
"the cartoon {}.",
|
63 |
+
"an embroidered {}.",
|
64 |
+
"the embroidered {}.",
|
65 |
+
"a painting of the {}.",
|
66 |
+
"a painting of a {}."
|
67 |
+
]
|
68 |
+
|
69 |
+
}
|
MeshAnything/miche/michelangelo/data/transforms.py
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import numpy as np
|
5 |
+
import warnings
|
6 |
+
import random
|
7 |
+
from omegaconf.listconfig import ListConfig
|
8 |
+
from webdataset import pipelinefilter
|
9 |
+
import torch
|
10 |
+
import torchvision.transforms.functional as TVF
|
11 |
+
from torchvision.transforms import InterpolationMode
|
12 |
+
from torchvision.transforms.transforms import _interpolation_modes_from_int
|
13 |
+
from typing import Sequence
|
14 |
+
|
15 |
+
from MeshAnything.miche.michelangelo.utils import instantiate_from_config
|
16 |
+
|
17 |
+
|
18 |
+
def _uid_buffer_pick(buf_dict, rng):
|
19 |
+
uid_keys = list(buf_dict.keys())
|
20 |
+
selected_uid = rng.choice(uid_keys)
|
21 |
+
buf = buf_dict[selected_uid]
|
22 |
+
|
23 |
+
k = rng.randint(0, len(buf) - 1)
|
24 |
+
sample = buf[k]
|
25 |
+
buf[k] = buf[-1]
|
26 |
+
buf.pop()
|
27 |
+
|
28 |
+
if len(buf) == 0:
|
29 |
+
del buf_dict[selected_uid]
|
30 |
+
|
31 |
+
return sample
|
32 |
+
|
33 |
+
|
34 |
+
def _add_to_buf_dict(buf_dict, sample):
|
35 |
+
key = sample["__key__"]
|
36 |
+
uid, uid_sample_id = key.split("_")
|
37 |
+
if uid not in buf_dict:
|
38 |
+
buf_dict[uid] = []
|
39 |
+
buf_dict[uid].append(sample)
|
40 |
+
|
41 |
+
return buf_dict
|
42 |
+
|
43 |
+
|
44 |
+
def _uid_shuffle(data, bufsize=1000, initial=100, rng=None, handler=None):
|
45 |
+
"""Shuffle the data in the stream.
|
46 |
+
|
47 |
+
This uses a buffer of size `bufsize`. Shuffling at
|
48 |
+
startup is less random; this is traded off against
|
49 |
+
yielding samples quickly.
|
50 |
+
|
51 |
+
data: iterator
|
52 |
+
bufsize: buffer size for shuffling
|
53 |
+
returns: iterator
|
54 |
+
rng: either random module or random.Random instance
|
55 |
+
|
56 |
+
"""
|
57 |
+
if rng is None:
|
58 |
+
rng = random.Random(int((os.getpid() + time.time()) * 1e9))
|
59 |
+
initial = min(initial, bufsize)
|
60 |
+
buf_dict = dict()
|
61 |
+
current_samples = 0
|
62 |
+
for sample in data:
|
63 |
+
_add_to_buf_dict(buf_dict, sample)
|
64 |
+
current_samples += 1
|
65 |
+
|
66 |
+
if current_samples < bufsize:
|
67 |
+
try:
|
68 |
+
_add_to_buf_dict(buf_dict, next(data)) # skipcq: PYL-R1708
|
69 |
+
current_samples += 1
|
70 |
+
except StopIteration:
|
71 |
+
pass
|
72 |
+
|
73 |
+
if current_samples >= initial:
|
74 |
+
current_samples -= 1
|
75 |
+
yield _uid_buffer_pick(buf_dict, rng)
|
76 |
+
|
77 |
+
while current_samples > 0:
|
78 |
+
current_samples -= 1
|
79 |
+
yield _uid_buffer_pick(buf_dict, rng)
|
80 |
+
|
81 |
+
|
82 |
+
uid_shuffle = pipelinefilter(_uid_shuffle)
|
83 |
+
|
84 |
+
|
85 |
+
class RandomSample(object):
|
86 |
+
def __init__(self,
|
87 |
+
num_volume_samples: int = 1024,
|
88 |
+
num_near_samples: int = 1024):
|
89 |
+
|
90 |
+
super().__init__()
|
91 |
+
|
92 |
+
self.num_volume_samples = num_volume_samples
|
93 |
+
self.num_near_samples = num_near_samples
|
94 |
+
|
95 |
+
def __call__(self, sample):
|
96 |
+
rng = np.random.default_rng()
|
97 |
+
|
98 |
+
# 1. sample surface input
|
99 |
+
total_surface = sample["surface"]
|
100 |
+
ind = rng.choice(total_surface.shape[0], replace=False)
|
101 |
+
surface = total_surface[ind]
|
102 |
+
|
103 |
+
# 2. sample volume/near geometric points
|
104 |
+
vol_points = sample["vol_points"]
|
105 |
+
vol_label = sample["vol_label"]
|
106 |
+
near_points = sample["near_points"]
|
107 |
+
near_label = sample["near_label"]
|
108 |
+
|
109 |
+
ind = rng.choice(vol_points.shape[0], self.num_volume_samples, replace=False)
|
110 |
+
vol_points = vol_points[ind]
|
111 |
+
vol_label = vol_label[ind]
|
112 |
+
vol_points_labels = np.concatenate([vol_points, vol_label[:, np.newaxis]], axis=1)
|
113 |
+
|
114 |
+
ind = rng.choice(near_points.shape[0], self.num_near_samples, replace=False)
|
115 |
+
near_points = near_points[ind]
|
116 |
+
near_label = near_label[ind]
|
117 |
+
near_points_labels = np.concatenate([near_points, near_label[:, np.newaxis]], axis=1)
|
118 |
+
|
119 |
+
# concat sampled volume and near points
|
120 |
+
geo_points = np.concatenate([vol_points_labels, near_points_labels], axis=0)
|
121 |
+
|
122 |
+
sample = {
|
123 |
+
"surface": surface,
|
124 |
+
"geo_points": geo_points
|
125 |
+
}
|
126 |
+
|
127 |
+
return sample
|
128 |
+
|
129 |
+
|
130 |
+
class SplitRandomSample(object):
|
131 |
+
def __init__(self,
|
132 |
+
use_surface_sample: bool = False,
|
133 |
+
num_surface_samples: int = 4096,
|
134 |
+
num_volume_samples: int = 1024,
|
135 |
+
num_near_samples: int = 1024):
|
136 |
+
|
137 |
+
super().__init__()
|
138 |
+
|
139 |
+
self.use_surface_sample = use_surface_sample
|
140 |
+
self.num_surface_samples = num_surface_samples
|
141 |
+
self.num_volume_samples = num_volume_samples
|
142 |
+
self.num_near_samples = num_near_samples
|
143 |
+
|
144 |
+
def __call__(self, sample):
|
145 |
+
|
146 |
+
rng = np.random.default_rng()
|
147 |
+
|
148 |
+
# 1. sample surface input
|
149 |
+
surface = sample["surface"]
|
150 |
+
|
151 |
+
if self.use_surface_sample:
|
152 |
+
replace = surface.shape[0] < self.num_surface_samples
|
153 |
+
ind = rng.choice(surface.shape[0], self.num_surface_samples, replace=replace)
|
154 |
+
surface = surface[ind]
|
155 |
+
|
156 |
+
# 2. sample volume/near geometric points
|
157 |
+
vol_points = sample["vol_points"]
|
158 |
+
vol_label = sample["vol_label"]
|
159 |
+
near_points = sample["near_points"]
|
160 |
+
near_label = sample["near_label"]
|
161 |
+
|
162 |
+
ind = rng.choice(vol_points.shape[0], self.num_volume_samples, replace=False)
|
163 |
+
vol_points = vol_points[ind]
|
164 |
+
vol_label = vol_label[ind]
|
165 |
+
vol_points_labels = np.concatenate([vol_points, vol_label[:, np.newaxis]], axis=1)
|
166 |
+
|
167 |
+
ind = rng.choice(near_points.shape[0], self.num_near_samples, replace=False)
|
168 |
+
near_points = near_points[ind]
|
169 |
+
near_label = near_label[ind]
|
170 |
+
near_points_labels = np.concatenate([near_points, near_label[:, np.newaxis]], axis=1)
|
171 |
+
|
172 |
+
# concat sampled volume and near points
|
173 |
+
geo_points = np.concatenate([vol_points_labels, near_points_labels], axis=0)
|
174 |
+
|
175 |
+
sample = {
|
176 |
+
"surface": surface,
|
177 |
+
"geo_points": geo_points
|
178 |
+
}
|
179 |
+
|
180 |
+
return sample
|
181 |
+
|
182 |
+
|
183 |
+
class FeatureSelection(object):
|
184 |
+
|
185 |
+
VALID_SURFACE_FEATURE_DIMS = {
|
186 |
+
"none": [0, 1, 2], # xyz
|
187 |
+
"watertight_normal": [0, 1, 2, 3, 4, 5], # xyz, normal
|
188 |
+
"normal": [0, 1, 2, 6, 7, 8]
|
189 |
+
}
|
190 |
+
|
191 |
+
def __init__(self, surface_feature_type: str):
|
192 |
+
|
193 |
+
self.surface_feature_type = surface_feature_type
|
194 |
+
self.surface_dims = self.VALID_SURFACE_FEATURE_DIMS[surface_feature_type]
|
195 |
+
|
196 |
+
def __call__(self, sample):
|
197 |
+
sample["surface"] = sample["surface"][:, self.surface_dims]
|
198 |
+
return sample
|
199 |
+
|
200 |
+
|
201 |
+
class AxisScaleTransform(object):
|
202 |
+
def __init__(self, interval=(0.75, 1.25), jitter=True, jitter_scale=0.005):
|
203 |
+
assert isinstance(interval, (tuple, list, ListConfig))
|
204 |
+
self.interval = interval
|
205 |
+
self.min_val = interval[0]
|
206 |
+
self.max_val = interval[1]
|
207 |
+
self.inter_size = interval[1] - interval[0]
|
208 |
+
self.jitter = jitter
|
209 |
+
self.jitter_scale = jitter_scale
|
210 |
+
|
211 |
+
def __call__(self, sample):
|
212 |
+
|
213 |
+
surface = sample["surface"][..., 0:3]
|
214 |
+
geo_points = sample["geo_points"][..., 0:3]
|
215 |
+
|
216 |
+
scaling = torch.rand(1, 3) * self.inter_size + self.min_val
|
217 |
+
# print(scaling)
|
218 |
+
surface = surface * scaling
|
219 |
+
geo_points = geo_points * scaling
|
220 |
+
|
221 |
+
scale = (1 / torch.abs(surface).max().item()) * 0.999999
|
222 |
+
surface *= scale
|
223 |
+
geo_points *= scale
|
224 |
+
|
225 |
+
if self.jitter:
|
226 |
+
surface += self.jitter_scale * torch.randn_like(surface)
|
227 |
+
surface.clamp_(min=-1.015, max=1.015)
|
228 |
+
|
229 |
+
sample["surface"][..., 0:3] = surface
|
230 |
+
sample["geo_points"][..., 0:3] = geo_points
|
231 |
+
|
232 |
+
return sample
|
233 |
+
|
234 |
+
|
235 |
+
class ToTensor(object):
|
236 |
+
|
237 |
+
def __init__(self, tensor_keys=("surface", "geo_points", "tex_points")):
|
238 |
+
self.tensor_keys = tensor_keys
|
239 |
+
|
240 |
+
def __call__(self, sample):
|
241 |
+
for key in self.tensor_keys:
|
242 |
+
if key not in sample:
|
243 |
+
continue
|
244 |
+
|
245 |
+
sample[key] = torch.tensor(sample[key], dtype=torch.float32)
|
246 |
+
|
247 |
+
return sample
|
248 |
+
|
249 |
+
|
250 |
+
class AxisScale(object):
|
251 |
+
def __init__(self, interval=(0.75, 1.25), jitter=True, jitter_scale=0.005):
|
252 |
+
assert isinstance(interval, (tuple, list, ListConfig))
|
253 |
+
self.interval = interval
|
254 |
+
self.jitter = jitter
|
255 |
+
self.jitter_scale = jitter_scale
|
256 |
+
|
257 |
+
def __call__(self, surface, *args):
|
258 |
+
scaling = torch.rand(1, 3) * 0.5 + 0.75
|
259 |
+
# print(scaling)
|
260 |
+
surface = surface * scaling
|
261 |
+
scale = (1 / torch.abs(surface).max().item()) * 0.999999
|
262 |
+
surface *= scale
|
263 |
+
|
264 |
+
args_outputs = []
|
265 |
+
for _arg in args:
|
266 |
+
_arg = _arg * scaling * scale
|
267 |
+
args_outputs.append(_arg)
|
268 |
+
|
269 |
+
if self.jitter:
|
270 |
+
surface += self.jitter_scale * torch.randn_like(surface)
|
271 |
+
surface.clamp_(min=-1, max=1)
|
272 |
+
|
273 |
+
if len(args) == 0:
|
274 |
+
return surface
|
275 |
+
else:
|
276 |
+
return surface, *args_outputs
|
277 |
+
|
278 |
+
|
279 |
+
class RandomResize(torch.nn.Module):
|
280 |
+
"""Apply randomly Resize with a given probability."""
|
281 |
+
|
282 |
+
def __init__(
|
283 |
+
self,
|
284 |
+
size,
|
285 |
+
resize_radio=(0.5, 1),
|
286 |
+
allow_resize_interpolations=(InterpolationMode.BICUBIC, InterpolationMode.BILINEAR, InterpolationMode.BILINEAR),
|
287 |
+
interpolation=InterpolationMode.BICUBIC,
|
288 |
+
max_size=None,
|
289 |
+
antialias=None,
|
290 |
+
):
|
291 |
+
super().__init__()
|
292 |
+
if not isinstance(size, (int, Sequence)):
|
293 |
+
raise TypeError(f"Size should be int or sequence. Got {type(size)}")
|
294 |
+
if isinstance(size, Sequence) and len(size) not in (1, 2):
|
295 |
+
raise ValueError("If size is a sequence, it should have 1 or 2 values")
|
296 |
+
|
297 |
+
self.size = size
|
298 |
+
self.max_size = max_size
|
299 |
+
# Backward compatibility with integer value
|
300 |
+
if isinstance(interpolation, int):
|
301 |
+
warnings.warn(
|
302 |
+
"Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
|
303 |
+
"Please use InterpolationMode enum."
|
304 |
+
)
|
305 |
+
interpolation = _interpolation_modes_from_int(interpolation)
|
306 |
+
|
307 |
+
self.interpolation = interpolation
|
308 |
+
self.antialias = antialias
|
309 |
+
|
310 |
+
self.resize_radio = resize_radio
|
311 |
+
self.allow_resize_interpolations = allow_resize_interpolations
|
312 |
+
|
313 |
+
def random_resize_params(self):
|
314 |
+
radio = torch.rand(1) * (self.resize_radio[1] - self.resize_radio[0]) + self.resize_radio[0]
|
315 |
+
|
316 |
+
if isinstance(self.size, int):
|
317 |
+
size = int(self.size * radio)
|
318 |
+
elif isinstance(self.size, Sequence):
|
319 |
+
size = list(self.size)
|
320 |
+
size = (int(size[0] * radio), int(size[1] * radio))
|
321 |
+
else:
|
322 |
+
raise RuntimeError()
|
323 |
+
|
324 |
+
interpolation = self.allow_resize_interpolations[
|
325 |
+
torch.randint(low=0, high=len(self.allow_resize_interpolations), size=(1,))
|
326 |
+
]
|
327 |
+
return size, interpolation
|
328 |
+
|
329 |
+
def forward(self, img):
|
330 |
+
size, interpolation = self.random_resize_params()
|
331 |
+
img = TVF.resize(img, size, interpolation, self.max_size, self.antialias)
|
332 |
+
img = TVF.resize(img, self.size, self.interpolation, self.max_size, self.antialias)
|
333 |
+
return img
|
334 |
+
|
335 |
+
def __repr__(self) -> str:
|
336 |
+
detail = f"(size={self.size}, interpolation={self.interpolation.value},"
|
337 |
+
detail += f"max_size={self.max_size}, antialias={self.antialias}), resize_radio={self.resize_radio}"
|
338 |
+
return f"{self.__class__.__name__}{detail}"
|
339 |
+
|
340 |
+
|
341 |
+
class Compose(object):
|
342 |
+
"""Composes several transforms together. This transform does not support torchscript.
|
343 |
+
Please, see the note below.
|
344 |
+
|
345 |
+
Args:
|
346 |
+
transforms (list of ``Transform`` objects): list of transforms to compose.
|
347 |
+
|
348 |
+
Example:
|
349 |
+
>>> transforms.Compose([
|
350 |
+
>>> transforms.CenterCrop(10),
|
351 |
+
>>> transforms.ToTensor(),
|
352 |
+
>>> ])
|
353 |
+
|
354 |
+
.. note::
|
355 |
+
In order to script the transformations, please use ``torch.nn.Sequential`` as below.
|
356 |
+
|
357 |
+
>>> transforms = torch.nn.Sequential(
|
358 |
+
>>> transforms.CenterCrop(10),
|
359 |
+
>>> transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
360 |
+
>>> )
|
361 |
+
>>> scripted_transforms = torch.jit.script(transforms)
|
362 |
+
|
363 |
+
Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
|
364 |
+
`lambda` functions or ``PIL.Image``.
|
365 |
+
|
366 |
+
"""
|
367 |
+
|
368 |
+
def __init__(self, transforms):
|
369 |
+
self.transforms = transforms
|
370 |
+
|
371 |
+
def __call__(self, *args):
|
372 |
+
for t in self.transforms:
|
373 |
+
args = t(*args)
|
374 |
+
return args
|
375 |
+
|
376 |
+
def __repr__(self):
|
377 |
+
format_string = self.__class__.__name__ + '('
|
378 |
+
for t in self.transforms:
|
379 |
+
format_string += '\n'
|
380 |
+
format_string += ' {0}'.format(t)
|
381 |
+
format_string += '\n)'
|
382 |
+
return format_string
|
383 |
+
|
384 |
+
|
385 |
+
def identity(*args, **kwargs):
|
386 |
+
if len(args) == 1:
|
387 |
+
return args[0]
|
388 |
+
else:
|
389 |
+
return args
|
390 |
+
|
391 |
+
|
392 |
+
def build_transforms(cfg):
|
393 |
+
|
394 |
+
if cfg is None:
|
395 |
+
return identity
|
396 |
+
|
397 |
+
transforms = []
|
398 |
+
|
399 |
+
for transform_name, cfg_instance in cfg.items():
|
400 |
+
transform_instance = instantiate_from_config(cfg_instance)
|
401 |
+
transforms.append(transform_instance)
|
402 |
+
print(f"Build transform: {transform_instance}")
|
403 |
+
|
404 |
+
transforms = Compose(transforms)
|
405 |
+
|
406 |
+
return transforms
|
407 |
+
|
MeshAnything/miche/michelangelo/data/utils.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
def worker_init_fn(_):
|
8 |
+
worker_info = torch.utils.data.get_worker_info()
|
9 |
+
worker_id = worker_info.id
|
10 |
+
|
11 |
+
# dataset = worker_info.dataset
|
12 |
+
# split_size = dataset.num_records // worker_info.num_workers
|
13 |
+
# # reset num_records to the true number to retain reliable length information
|
14 |
+
# dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size]
|
15 |
+
# current_id = np.random.choice(len(np.random.get_state()[1]), 1)
|
16 |
+
# return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
|
17 |
+
|
18 |
+
return np.random.seed(np.random.get_state()[1][0] + worker_id)
|
19 |
+
|
20 |
+
|
21 |
+
def collation_fn(samples, combine_tensors=True, combine_scalars=True):
|
22 |
+
"""
|
23 |
+
|
24 |
+
Args:
|
25 |
+
samples (list[dict]):
|
26 |
+
combine_tensors:
|
27 |
+
combine_scalars:
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
|
31 |
+
"""
|
32 |
+
|
33 |
+
result = {}
|
34 |
+
|
35 |
+
keys = samples[0].keys()
|
36 |
+
|
37 |
+
for key in keys:
|
38 |
+
result[key] = []
|
39 |
+
|
40 |
+
for sample in samples:
|
41 |
+
for key in keys:
|
42 |
+
val = sample[key]
|
43 |
+
result[key].append(val)
|
44 |
+
|
45 |
+
for key in keys:
|
46 |
+
val_list = result[key]
|
47 |
+
if isinstance(val_list[0], (int, float)):
|
48 |
+
if combine_scalars:
|
49 |
+
result[key] = np.array(result[key])
|
50 |
+
|
51 |
+
elif isinstance(val_list[0], torch.Tensor):
|
52 |
+
if combine_tensors:
|
53 |
+
result[key] = torch.stack(val_list)
|
54 |
+
|
55 |
+
elif isinstance(val_list[0], np.ndarray):
|
56 |
+
if combine_tensors:
|
57 |
+
result[key] = np.stack(val_list)
|
58 |
+
|
59 |
+
return result
|
MeshAnything/miche/michelangelo/graphics/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
MeshAnything/miche/michelangelo/graphics/primitives/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .volume import generate_dense_grid_points
|
4 |
+
|
5 |
+
from .mesh import (
|
6 |
+
MeshOutput,
|
7 |
+
save_obj,
|
8 |
+
savemeshtes2
|
9 |
+
)
|
MeshAnything/miche/michelangelo/graphics/primitives/mesh.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import os
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import PIL.Image
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import trimesh
|
10 |
+
|
11 |
+
|
12 |
+
def save_obj(pointnp_px3, facenp_fx3, fname):
|
13 |
+
fid = open(fname, "w")
|
14 |
+
write_str = ""
|
15 |
+
for pidx, p in enumerate(pointnp_px3):
|
16 |
+
pp = p
|
17 |
+
write_str += "v %f %f %f\n" % (pp[0], pp[1], pp[2])
|
18 |
+
|
19 |
+
for i, f in enumerate(facenp_fx3):
|
20 |
+
f1 = f + 1
|
21 |
+
write_str += "f %d %d %d\n" % (f1[0], f1[1], f1[2])
|
22 |
+
fid.write(write_str)
|
23 |
+
fid.close()
|
24 |
+
return
|
25 |
+
|
26 |
+
|
27 |
+
def savemeshtes2(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, tex_map, fname):
|
28 |
+
fol, na = os.path.split(fname)
|
29 |
+
na, _ = os.path.splitext(na)
|
30 |
+
|
31 |
+
matname = "%s/%s.mtl" % (fol, na)
|
32 |
+
fid = open(matname, "w")
|
33 |
+
fid.write("newmtl material_0\n")
|
34 |
+
fid.write("Kd 1 1 1\n")
|
35 |
+
fid.write("Ka 0 0 0\n")
|
36 |
+
fid.write("Ks 0.4 0.4 0.4\n")
|
37 |
+
fid.write("Ns 10\n")
|
38 |
+
fid.write("illum 2\n")
|
39 |
+
fid.write("map_Kd %s.png\n" % na)
|
40 |
+
fid.close()
|
41 |
+
####
|
42 |
+
|
43 |
+
fid = open(fname, "w")
|
44 |
+
fid.write("mtllib %s.mtl\n" % na)
|
45 |
+
|
46 |
+
for pidx, p in enumerate(pointnp_px3):
|
47 |
+
pp = p
|
48 |
+
fid.write("v %f %f %f\n" % (pp[0], pp[1], pp[2]))
|
49 |
+
|
50 |
+
for pidx, p in enumerate(tcoords_px2):
|
51 |
+
pp = p
|
52 |
+
fid.write("vt %f %f\n" % (pp[0], pp[1]))
|
53 |
+
|
54 |
+
fid.write("usemtl material_0\n")
|
55 |
+
for i, f in enumerate(facenp_fx3):
|
56 |
+
f1 = f + 1
|
57 |
+
f2 = facetex_fx3[i] + 1
|
58 |
+
fid.write("f %d/%d %d/%d %d/%d\n" % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2]))
|
59 |
+
fid.close()
|
60 |
+
|
61 |
+
PIL.Image.fromarray(np.ascontiguousarray(tex_map), "RGB").save(
|
62 |
+
os.path.join(fol, "%s.png" % na))
|
63 |
+
|
64 |
+
return
|
65 |
+
|
66 |
+
|
67 |
+
class MeshOutput(object):
|
68 |
+
|
69 |
+
def __init__(self,
|
70 |
+
mesh_v: np.ndarray,
|
71 |
+
mesh_f: np.ndarray,
|
72 |
+
vertex_colors: Optional[np.ndarray] = None,
|
73 |
+
uvs: Optional[np.ndarray] = None,
|
74 |
+
mesh_tex_idx: Optional[np.ndarray] = None,
|
75 |
+
tex_map: Optional[np.ndarray] = None):
|
76 |
+
|
77 |
+
self.mesh_v = mesh_v
|
78 |
+
self.mesh_f = mesh_f
|
79 |
+
self.vertex_colors = vertex_colors
|
80 |
+
self.uvs = uvs
|
81 |
+
self.mesh_tex_idx = mesh_tex_idx
|
82 |
+
self.tex_map = tex_map
|
83 |
+
|
84 |
+
def contain_uv_texture(self):
|
85 |
+
return (self.uvs is not None) and (self.mesh_tex_idx is not None) and (self.tex_map is not None)
|
86 |
+
|
87 |
+
def contain_vertex_colors(self):
|
88 |
+
return self.vertex_colors is not None
|
89 |
+
|
90 |
+
def export(self, fname):
|
91 |
+
|
92 |
+
if self.contain_uv_texture():
|
93 |
+
savemeshtes2(
|
94 |
+
self.mesh_v,
|
95 |
+
self.uvs,
|
96 |
+
self.mesh_f,
|
97 |
+
self.mesh_tex_idx,
|
98 |
+
self.tex_map,
|
99 |
+
fname
|
100 |
+
)
|
101 |
+
|
102 |
+
elif self.contain_vertex_colors():
|
103 |
+
mesh_obj = trimesh.Trimesh(vertices=self.mesh_v, faces=self.mesh_f, vertex_colors=self.vertex_colors)
|
104 |
+
mesh_obj.export(fname)
|
105 |
+
|
106 |
+
else:
|
107 |
+
save_obj(
|
108 |
+
self.mesh_v,
|
109 |
+
self.mesh_f,
|
110 |
+
fname
|
111 |
+
)
|
112 |
+
|
113 |
+
|
114 |
+
|
MeshAnything/miche/michelangelo/graphics/primitives/volume.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
def generate_dense_grid_points(bbox_min: np.ndarray,
|
7 |
+
bbox_max: np.ndarray,
|
8 |
+
octree_depth: int,
|
9 |
+
indexing: str = "ij"):
|
10 |
+
length = bbox_max - bbox_min
|
11 |
+
num_cells = np.exp2(octree_depth)
|
12 |
+
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
|
13 |
+
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
|
14 |
+
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
|
15 |
+
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
|
16 |
+
xyz = np.stack((xs, ys, zs), axis=-1)
|
17 |
+
xyz = xyz.reshape(-1, 3)
|
18 |
+
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
|
19 |
+
|
20 |
+
return xyz, grid_size, length
|
21 |
+
|
MeshAnything/miche/michelangelo/models/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
MeshAnything/miche/michelangelo/models/asl_diffusion/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
MeshAnything/miche/michelangelo/models/asl_diffusion/asl_diffuser_pl_module.py
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from omegaconf import DictConfig
|
4 |
+
from typing import List, Tuple, Dict, Optional, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.optim import lr_scheduler
|
10 |
+
import pytorch_lightning as pl
|
11 |
+
from pytorch_lightning.utilities import rank_zero_only
|
12 |
+
|
13 |
+
from einops import rearrange
|
14 |
+
|
15 |
+
from diffusers.schedulers import (
|
16 |
+
DDPMScheduler,
|
17 |
+
DDIMScheduler,
|
18 |
+
KarrasVeScheduler,
|
19 |
+
DPMSolverMultistepScheduler
|
20 |
+
)
|
21 |
+
|
22 |
+
from MeshAnything.miche.michelangelo.utils import instantiate_from_config
|
23 |
+
# from MeshAnything.miche.michelangelo.models.tsal.tsal_base import ShapeAsLatentPLModule
|
24 |
+
from MeshAnything.miche.michelangelo.models.tsal.tsal_base import AlignedShapeAsLatentPLModule
|
25 |
+
from MeshAnything.miche.michelangelo.models.asl_diffusion.inference_utils import ddim_sample
|
26 |
+
|
27 |
+
SchedulerType = Union[DDIMScheduler, KarrasVeScheduler, DPMSolverMultistepScheduler]
|
28 |
+
|
29 |
+
|
30 |
+
def disabled_train(self, mode=True):
|
31 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
32 |
+
does not change anymore."""
|
33 |
+
return self
|
34 |
+
|
35 |
+
|
36 |
+
class ASLDiffuser(pl.LightningModule):
|
37 |
+
first_stage_model: Optional[AlignedShapeAsLatentPLModule]
|
38 |
+
# cond_stage_model: Optional[Union[nn.Module, pl.LightningModule]]
|
39 |
+
model: nn.Module
|
40 |
+
|
41 |
+
def __init__(self, *,
|
42 |
+
first_stage_config,
|
43 |
+
denoiser_cfg,
|
44 |
+
scheduler_cfg,
|
45 |
+
optimizer_cfg,
|
46 |
+
loss_cfg,
|
47 |
+
first_stage_key: str = "surface",
|
48 |
+
cond_stage_key: str = "image",
|
49 |
+
cond_stage_trainable: bool = True,
|
50 |
+
scale_by_std: bool = False,
|
51 |
+
z_scale_factor: float = 1.0,
|
52 |
+
ckpt_path: Optional[str] = None,
|
53 |
+
ignore_keys: Union[Tuple[str], List[str]] = ()):
|
54 |
+
|
55 |
+
super().__init__()
|
56 |
+
|
57 |
+
self.first_stage_key = first_stage_key
|
58 |
+
self.cond_stage_key = cond_stage_key
|
59 |
+
self.cond_stage_trainable = cond_stage_trainable
|
60 |
+
|
61 |
+
# 1. initialize first stage.
|
62 |
+
# Note: the condition model contained in the first stage model.
|
63 |
+
self.first_stage_config = first_stage_config
|
64 |
+
self.first_stage_model = None
|
65 |
+
# self.instantiate_first_stage(first_stage_config)
|
66 |
+
|
67 |
+
# 2. initialize conditional stage
|
68 |
+
# self.instantiate_cond_stage(cond_stage_config)
|
69 |
+
self.cond_stage_model = {
|
70 |
+
"image": self.encode_image,
|
71 |
+
"image_unconditional_embedding": self.empty_img_cond,
|
72 |
+
"text": self.encode_text,
|
73 |
+
"text_unconditional_embedding": self.empty_text_cond,
|
74 |
+
"surface": self.encode_surface,
|
75 |
+
"surface_unconditional_embedding": self.empty_surface_cond,
|
76 |
+
}
|
77 |
+
|
78 |
+
# 3. diffusion model
|
79 |
+
self.model = instantiate_from_config(
|
80 |
+
denoiser_cfg, device=None, dtype=None
|
81 |
+
)
|
82 |
+
|
83 |
+
self.optimizer_cfg = optimizer_cfg
|
84 |
+
|
85 |
+
# 4. scheduling strategy
|
86 |
+
self.scheduler_cfg = scheduler_cfg
|
87 |
+
|
88 |
+
self.noise_scheduler: DDPMScheduler = instantiate_from_config(scheduler_cfg.noise)
|
89 |
+
self.denoise_scheduler: SchedulerType = instantiate_from_config(scheduler_cfg.denoise)
|
90 |
+
|
91 |
+
# 5. loss configures
|
92 |
+
self.loss_cfg = loss_cfg
|
93 |
+
|
94 |
+
self.scale_by_std = scale_by_std
|
95 |
+
if scale_by_std:
|
96 |
+
self.register_buffer("z_scale_factor", torch.tensor(z_scale_factor))
|
97 |
+
else:
|
98 |
+
self.z_scale_factor = z_scale_factor
|
99 |
+
|
100 |
+
self.ckpt_path = ckpt_path
|
101 |
+
if ckpt_path is not None:
|
102 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
103 |
+
|
104 |
+
def instantiate_first_stage(self, config):
|
105 |
+
model = instantiate_from_config(config)
|
106 |
+
self.first_stage_model = model.eval()
|
107 |
+
self.first_stage_model.train = disabled_train
|
108 |
+
for param in self.first_stage_model.parameters():
|
109 |
+
param.requires_grad = False
|
110 |
+
|
111 |
+
self.first_stage_model = self.first_stage_model.to(self.device)
|
112 |
+
|
113 |
+
# def instantiate_cond_stage(self, config):
|
114 |
+
# if not self.cond_stage_trainable:
|
115 |
+
# if config == "__is_first_stage__":
|
116 |
+
# print("Using first stage also as cond stage.")
|
117 |
+
# self.cond_stage_model = self.first_stage_model
|
118 |
+
# elif config == "__is_unconditional__":
|
119 |
+
# print(f"Training {self.__class__.__name__} as an unconditional model.")
|
120 |
+
# self.cond_stage_model = None
|
121 |
+
# # self.be_unconditional = True
|
122 |
+
# else:
|
123 |
+
# model = instantiate_from_config(config)
|
124 |
+
# self.cond_stage_model = model.eval()
|
125 |
+
# self.cond_stage_model.train = disabled_train
|
126 |
+
# for param in self.cond_stage_model.parameters():
|
127 |
+
# param.requires_grad = False
|
128 |
+
# else:
|
129 |
+
# assert config != "__is_first_stage__"
|
130 |
+
# assert config != "__is_unconditional__"
|
131 |
+
# model = instantiate_from_config(config)
|
132 |
+
# self.cond_stage_model = model
|
133 |
+
|
134 |
+
def init_from_ckpt(self, path, ignore_keys=()):
|
135 |
+
state_dict = torch.load(path, map_location="cpu")["state_dict"]
|
136 |
+
|
137 |
+
keys = list(state_dict.keys())
|
138 |
+
for k in keys:
|
139 |
+
for ik in ignore_keys:
|
140 |
+
if k.startswith(ik):
|
141 |
+
print("Deleting key {} from state_dict.".format(k))
|
142 |
+
del state_dict[k]
|
143 |
+
|
144 |
+
missing, unexpected = self.load_state_dict(state_dict, strict=False)
|
145 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
146 |
+
if len(missing) > 0:
|
147 |
+
print(f"Missing Keys: {missing}")
|
148 |
+
print(f"Unexpected Keys: {unexpected}")
|
149 |
+
|
150 |
+
@property
|
151 |
+
def zero_rank(self):
|
152 |
+
if self._trainer:
|
153 |
+
zero_rank = self.trainer.local_rank == 0
|
154 |
+
else:
|
155 |
+
zero_rank = True
|
156 |
+
|
157 |
+
return zero_rank
|
158 |
+
|
159 |
+
def configure_optimizers(self) -> Tuple[List, List]:
|
160 |
+
|
161 |
+
lr = self.learning_rate
|
162 |
+
|
163 |
+
trainable_parameters = list(self.model.parameters())
|
164 |
+
# if the conditional encoder is trainable
|
165 |
+
|
166 |
+
# if self.cond_stage_trainable:
|
167 |
+
# conditioner_params = [p for p in self.cond_stage_model.parameters() if p.requires_grad]
|
168 |
+
# trainable_parameters += conditioner_params
|
169 |
+
# print(f"number of trainable conditional parameters: {len(conditioner_params)}.")
|
170 |
+
|
171 |
+
if self.optimizer_cfg is None:
|
172 |
+
optimizers = [torch.optim.AdamW(trainable_parameters, lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
173 |
+
schedulers = []
|
174 |
+
else:
|
175 |
+
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=trainable_parameters)
|
176 |
+
scheduler_func = instantiate_from_config(
|
177 |
+
self.optimizer_cfg.scheduler,
|
178 |
+
max_decay_steps=self.trainer.max_steps,
|
179 |
+
lr_max=lr
|
180 |
+
)
|
181 |
+
scheduler = {
|
182 |
+
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
|
183 |
+
"interval": "step",
|
184 |
+
"frequency": 1
|
185 |
+
}
|
186 |
+
optimizers = [optimizer]
|
187 |
+
schedulers = [scheduler]
|
188 |
+
|
189 |
+
return optimizers, schedulers
|
190 |
+
|
191 |
+
@torch.no_grad()
|
192 |
+
def encode_text(self, text):
|
193 |
+
|
194 |
+
b = text.shape[0]
|
195 |
+
text_tokens = rearrange(text, "b t l -> (b t) l")
|
196 |
+
text_embed = self.first_stage_model.model.encode_text_embed(text_tokens)
|
197 |
+
text_embed = rearrange(text_embed, "(b t) d -> b t d", b=b)
|
198 |
+
text_embed = text_embed.mean(dim=1)
|
199 |
+
text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
|
200 |
+
|
201 |
+
return text_embed
|
202 |
+
|
203 |
+
@torch.no_grad()
|
204 |
+
def encode_image(self, img):
|
205 |
+
|
206 |
+
return self.first_stage_model.model.encode_image_embed(img)
|
207 |
+
|
208 |
+
@torch.no_grad()
|
209 |
+
def encode_surface(self, surface):
|
210 |
+
|
211 |
+
return self.first_stage_model.model.encode_shape_embed(surface, return_latents=False)
|
212 |
+
|
213 |
+
@torch.no_grad()
|
214 |
+
def empty_text_cond(self, cond):
|
215 |
+
|
216 |
+
return torch.zeros_like(cond, device=cond.device)
|
217 |
+
|
218 |
+
@torch.no_grad()
|
219 |
+
def empty_img_cond(self, cond):
|
220 |
+
|
221 |
+
return torch.zeros_like(cond, device=cond.device)
|
222 |
+
|
223 |
+
@torch.no_grad()
|
224 |
+
def empty_surface_cond(self, cond):
|
225 |
+
|
226 |
+
return torch.zeros_like(cond, device=cond.device)
|
227 |
+
|
228 |
+
@torch.no_grad()
|
229 |
+
def encode_first_stage(self, surface: torch.FloatTensor, sample_posterior=True):
|
230 |
+
|
231 |
+
z_q = self.first_stage_model.encode(surface, sample_posterior)
|
232 |
+
z_q = self.z_scale_factor * z_q
|
233 |
+
|
234 |
+
return z_q
|
235 |
+
|
236 |
+
@torch.no_grad()
|
237 |
+
def decode_first_stage(self, z_q: torch.FloatTensor, **kwargs):
|
238 |
+
|
239 |
+
z_q = 1. / self.z_scale_factor * z_q
|
240 |
+
latents = self.first_stage_model.decode(z_q, **kwargs)
|
241 |
+
return latents
|
242 |
+
|
243 |
+
@rank_zero_only
|
244 |
+
@torch.no_grad()
|
245 |
+
def on_train_batch_start(self, batch, batch_idx):
|
246 |
+
# only for very first batch
|
247 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 \
|
248 |
+
and batch_idx == 0 and self.ckpt_path is None:
|
249 |
+
# set rescale weight to 1./std of encodings
|
250 |
+
print("### USING STD-RESCALING ###")
|
251 |
+
|
252 |
+
z_q = self.encode_first_stage(batch[self.first_stage_key])
|
253 |
+
z = z_q.detach()
|
254 |
+
|
255 |
+
del self.z_scale_factor
|
256 |
+
self.register_buffer("z_scale_factor", 1. / z.flatten().std())
|
257 |
+
print(f"setting self.z_scale_factor to {self.z_scale_factor}")
|
258 |
+
|
259 |
+
print("### USING STD-RESCALING ###")
|
260 |
+
|
261 |
+
def compute_loss(self, model_outputs, split):
|
262 |
+
"""
|
263 |
+
|
264 |
+
Args:
|
265 |
+
model_outputs (dict):
|
266 |
+
- x_0:
|
267 |
+
- noise:
|
268 |
+
- noise_prior:
|
269 |
+
- noise_pred:
|
270 |
+
- noise_pred_prior:
|
271 |
+
|
272 |
+
split (str):
|
273 |
+
|
274 |
+
Returns:
|
275 |
+
|
276 |
+
"""
|
277 |
+
|
278 |
+
pred = model_outputs["pred"]
|
279 |
+
|
280 |
+
if self.noise_scheduler.prediction_type == "epsilon":
|
281 |
+
target = model_outputs["noise"]
|
282 |
+
elif self.noise_scheduler.prediction_type == "sample":
|
283 |
+
target = model_outputs["x_0"]
|
284 |
+
else:
|
285 |
+
raise NotImplementedError(f"Prediction Type: {self.noise_scheduler.prediction_type} not yet supported.")
|
286 |
+
|
287 |
+
if self.loss_cfg.loss_type == "l1":
|
288 |
+
simple = F.l1_loss(pred, target, reduction="mean")
|
289 |
+
elif self.loss_cfg.loss_type in ["mse", "l2"]:
|
290 |
+
simple = F.mse_loss(pred, target, reduction="mean")
|
291 |
+
else:
|
292 |
+
raise NotImplementedError(f"Loss Type: {self.loss_cfg.loss_type} not yet supported.")
|
293 |
+
|
294 |
+
total_loss = simple
|
295 |
+
|
296 |
+
loss_dict = {
|
297 |
+
f"{split}/total_loss": total_loss.clone().detach(),
|
298 |
+
f"{split}/simple": simple.detach(),
|
299 |
+
}
|
300 |
+
|
301 |
+
return total_loss, loss_dict
|
302 |
+
|
303 |
+
def forward(self, batch):
|
304 |
+
"""
|
305 |
+
|
306 |
+
Args:
|
307 |
+
batch:
|
308 |
+
|
309 |
+
Returns:
|
310 |
+
|
311 |
+
"""
|
312 |
+
|
313 |
+
if self.first_stage_model is None:
|
314 |
+
self.instantiate_first_stage(self.first_stage_config)
|
315 |
+
|
316 |
+
latents = self.encode_first_stage(batch[self.first_stage_key])
|
317 |
+
|
318 |
+
# conditions = self.cond_stage_model.encode(batch[self.cond_stage_key])
|
319 |
+
|
320 |
+
conditions = self.cond_stage_model[self.cond_stage_key](batch[self.cond_stage_key]).unsqueeze(1)
|
321 |
+
|
322 |
+
mask = torch.rand((len(conditions), 1, 1), device=conditions.device, dtype=conditions.dtype) >= 0.1
|
323 |
+
conditions = conditions * mask.to(conditions)
|
324 |
+
|
325 |
+
# Sample noise that we"ll add to the latents
|
326 |
+
# [batch_size, n_token, latent_dim]
|
327 |
+
noise = torch.randn_like(latents)
|
328 |
+
bs = latents.shape[0]
|
329 |
+
# Sample a random timestep for each motion
|
330 |
+
timesteps = torch.randint(
|
331 |
+
0,
|
332 |
+
self.noise_scheduler.config.num_train_timesteps,
|
333 |
+
(bs,),
|
334 |
+
device=latents.device,
|
335 |
+
)
|
336 |
+
timesteps = timesteps.long()
|
337 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
338 |
+
noisy_z = self.noise_scheduler.add_noise(latents, noise, timesteps)
|
339 |
+
|
340 |
+
# diffusion model forward
|
341 |
+
noise_pred = self.model(noisy_z, timesteps, conditions)
|
342 |
+
|
343 |
+
diffusion_outputs = {
|
344 |
+
"x_0": noisy_z,
|
345 |
+
"noise": noise,
|
346 |
+
"pred": noise_pred
|
347 |
+
}
|
348 |
+
|
349 |
+
return diffusion_outputs
|
350 |
+
|
351 |
+
def training_step(self, batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
352 |
+
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
353 |
+
"""
|
354 |
+
|
355 |
+
Args:
|
356 |
+
batch (dict): the batch sample, and it contains:
|
357 |
+
- surface (torch.FloatTensor):
|
358 |
+
- image (torch.FloatTensor): if provide, [bs, 3, h, w], item range [0, 1]
|
359 |
+
- depth (torch.FloatTensor): if provide, [bs, 1, h, w], item range [-1, 1]
|
360 |
+
- normal (torch.FloatTensor): if provide, [bs, 3, h, w], item range [-1, 1]
|
361 |
+
- text (list of str):
|
362 |
+
|
363 |
+
batch_idx (int):
|
364 |
+
|
365 |
+
optimizer_idx (int):
|
366 |
+
|
367 |
+
Returns:
|
368 |
+
loss (torch.FloatTensor):
|
369 |
+
|
370 |
+
"""
|
371 |
+
|
372 |
+
diffusion_outputs = self(batch)
|
373 |
+
|
374 |
+
loss, loss_dict = self.compute_loss(diffusion_outputs, "train")
|
375 |
+
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
376 |
+
|
377 |
+
return loss
|
378 |
+
|
379 |
+
def validation_step(self, batch: Dict[str, torch.FloatTensor],
|
380 |
+
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
381 |
+
"""
|
382 |
+
|
383 |
+
Args:
|
384 |
+
batch (dict): the batch sample, and it contains:
|
385 |
+
- surface_pc (torch.FloatTensor): [n_pts, 4]
|
386 |
+
- surface_feats (torch.FloatTensor): [n_pts, c]
|
387 |
+
- text (list of str):
|
388 |
+
|
389 |
+
batch_idx (int):
|
390 |
+
|
391 |
+
optimizer_idx (int):
|
392 |
+
|
393 |
+
Returns:
|
394 |
+
loss (torch.FloatTensor):
|
395 |
+
|
396 |
+
"""
|
397 |
+
|
398 |
+
diffusion_outputs = self(batch)
|
399 |
+
|
400 |
+
loss, loss_dict = self.compute_loss(diffusion_outputs, "val")
|
401 |
+
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
402 |
+
|
403 |
+
return loss
|
404 |
+
|
405 |
+
@torch.no_grad()
|
406 |
+
def sample(self,
|
407 |
+
batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
408 |
+
sample_times: int = 1,
|
409 |
+
steps: Optional[int] = None,
|
410 |
+
guidance_scale: Optional[float] = None,
|
411 |
+
eta: float = 0.0,
|
412 |
+
return_intermediates: bool = False, **kwargs):
|
413 |
+
|
414 |
+
if self.first_stage_model is None:
|
415 |
+
self.instantiate_first_stage(self.first_stage_config)
|
416 |
+
|
417 |
+
if steps is None:
|
418 |
+
steps = self.scheduler_cfg.num_inference_steps
|
419 |
+
|
420 |
+
if guidance_scale is None:
|
421 |
+
guidance_scale = self.scheduler_cfg.guidance_scale
|
422 |
+
do_classifier_free_guidance = guidance_scale > 0
|
423 |
+
|
424 |
+
# conditional encode
|
425 |
+
xc = batch[self.cond_stage_key]
|
426 |
+
# cond = self.cond_stage_model[self.cond_stage_key](xc)
|
427 |
+
cond = self.cond_stage_model[self.cond_stage_key](xc).unsqueeze(1)
|
428 |
+
|
429 |
+
if do_classifier_free_guidance:
|
430 |
+
"""
|
431 |
+
Note: There are two kinds of uncond for text.
|
432 |
+
1: using "" as uncond text; (in SAL diffusion)
|
433 |
+
2: zeros_like(cond) as uncond text; (in MDM)
|
434 |
+
"""
|
435 |
+
# un_cond = self.cond_stage_model.unconditional_embedding(batch_size=len(xc))
|
436 |
+
un_cond = self.cond_stage_model[f"{self.cond_stage_key}_unconditional_embedding"](cond)
|
437 |
+
# un_cond = torch.zeros_like(cond, device=cond.device)
|
438 |
+
cond = torch.cat([un_cond, cond], dim=0)
|
439 |
+
|
440 |
+
outputs = []
|
441 |
+
latents = None
|
442 |
+
|
443 |
+
if not return_intermediates:
|
444 |
+
for _ in range(sample_times):
|
445 |
+
sample_loop = ddim_sample(
|
446 |
+
self.denoise_scheduler,
|
447 |
+
self.model,
|
448 |
+
shape=self.first_stage_model.latent_shape,
|
449 |
+
cond=cond,
|
450 |
+
steps=steps,
|
451 |
+
guidance_scale=guidance_scale,
|
452 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
453 |
+
device=self.device,
|
454 |
+
eta=eta,
|
455 |
+
disable_prog=not self.zero_rank
|
456 |
+
)
|
457 |
+
for sample, t in sample_loop:
|
458 |
+
latents = sample
|
459 |
+
outputs.append(self.decode_first_stage(latents, **kwargs))
|
460 |
+
else:
|
461 |
+
|
462 |
+
sample_loop = ddim_sample(
|
463 |
+
self.denoise_scheduler,
|
464 |
+
self.model,
|
465 |
+
shape=self.first_stage_model.latent_shape,
|
466 |
+
cond=cond,
|
467 |
+
steps=steps,
|
468 |
+
guidance_scale=guidance_scale,
|
469 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
470 |
+
device=self.device,
|
471 |
+
eta=eta,
|
472 |
+
disable_prog=not self.zero_rank
|
473 |
+
)
|
474 |
+
|
475 |
+
iter_size = steps // sample_times
|
476 |
+
i = 0
|
477 |
+
for sample, t in sample_loop:
|
478 |
+
latents = sample
|
479 |
+
if i % iter_size == 0 or i == steps - 1:
|
480 |
+
outputs.append(self.decode_first_stage(latents, **kwargs))
|
481 |
+
i += 1
|
482 |
+
|
483 |
+
return outputs
|
MeshAnything/miche/michelangelo/models/asl_diffusion/asl_udt.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from typing import Optional
|
6 |
+
from diffusers.models.embeddings import Timesteps
|
7 |
+
import math
|
8 |
+
|
9 |
+
from MeshAnything.miche.michelangelo.models.modules.transformer_blocks import MLP
|
10 |
+
from MeshAnything.miche.michelangelo.models.modules.diffusion_transformer import UNetDiffusionTransformer
|
11 |
+
|
12 |
+
|
13 |
+
class ConditionalASLUDTDenoiser(nn.Module):
|
14 |
+
|
15 |
+
def __init__(self, *,
|
16 |
+
device: Optional[torch.device],
|
17 |
+
dtype: Optional[torch.dtype],
|
18 |
+
input_channels: int,
|
19 |
+
output_channels: int,
|
20 |
+
n_ctx: int,
|
21 |
+
width: int,
|
22 |
+
layers: int,
|
23 |
+
heads: int,
|
24 |
+
context_dim: int,
|
25 |
+
context_ln: bool = True,
|
26 |
+
skip_ln: bool = False,
|
27 |
+
init_scale: float = 0.25,
|
28 |
+
flip_sin_to_cos: bool = False,
|
29 |
+
use_checkpoint: bool = False):
|
30 |
+
super().__init__()
|
31 |
+
|
32 |
+
self.use_checkpoint = use_checkpoint
|
33 |
+
|
34 |
+
init_scale = init_scale * math.sqrt(1.0 / width)
|
35 |
+
|
36 |
+
self.backbone = UNetDiffusionTransformer(
|
37 |
+
device=device,
|
38 |
+
dtype=dtype,
|
39 |
+
n_ctx=n_ctx,
|
40 |
+
width=width,
|
41 |
+
layers=layers,
|
42 |
+
heads=heads,
|
43 |
+
skip_ln=skip_ln,
|
44 |
+
init_scale=init_scale,
|
45 |
+
use_checkpoint=use_checkpoint
|
46 |
+
)
|
47 |
+
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
|
48 |
+
self.input_proj = nn.Linear(input_channels, width, device=device, dtype=dtype)
|
49 |
+
self.output_proj = nn.Linear(width, output_channels, device=device, dtype=dtype)
|
50 |
+
|
51 |
+
# timestep embedding
|
52 |
+
self.time_embed = Timesteps(width, flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=0)
|
53 |
+
self.time_proj = MLP(
|
54 |
+
device=device, dtype=dtype, width=width, init_scale=init_scale
|
55 |
+
)
|
56 |
+
|
57 |
+
self.context_embed = nn.Sequential(
|
58 |
+
nn.LayerNorm(context_dim, device=device, dtype=dtype),
|
59 |
+
nn.Linear(context_dim, width, device=device, dtype=dtype),
|
60 |
+
)
|
61 |
+
|
62 |
+
if context_ln:
|
63 |
+
self.context_embed = nn.Sequential(
|
64 |
+
nn.LayerNorm(context_dim, device=device, dtype=dtype),
|
65 |
+
nn.Linear(context_dim, width, device=device, dtype=dtype),
|
66 |
+
)
|
67 |
+
else:
|
68 |
+
self.context_embed = nn.Linear(context_dim, width, device=device, dtype=dtype)
|
69 |
+
|
70 |
+
def forward(self,
|
71 |
+
model_input: torch.FloatTensor,
|
72 |
+
timestep: torch.LongTensor,
|
73 |
+
context: torch.FloatTensor):
|
74 |
+
|
75 |
+
r"""
|
76 |
+
Args:
|
77 |
+
model_input (torch.FloatTensor): [bs, n_data, c]
|
78 |
+
timestep (torch.LongTensor): [bs,]
|
79 |
+
context (torch.FloatTensor): [bs, context_tokens, c]
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
sample (torch.FloatTensor): [bs, n_data, c]
|
83 |
+
|
84 |
+
"""
|
85 |
+
|
86 |
+
_, n_data, _ = model_input.shape
|
87 |
+
|
88 |
+
# 1. time
|
89 |
+
t_emb = self.time_proj(self.time_embed(timestep)).unsqueeze(dim=1)
|
90 |
+
|
91 |
+
# 2. conditions projector
|
92 |
+
context = self.context_embed(context)
|
93 |
+
|
94 |
+
# 3. denoiser
|
95 |
+
x = self.input_proj(model_input)
|
96 |
+
x = torch.cat([t_emb, context, x], dim=1)
|
97 |
+
x = self.backbone(x)
|
98 |
+
x = self.ln_post(x)
|
99 |
+
x = x[:, -n_data:]
|
100 |
+
sample = self.output_proj(x)
|
101 |
+
|
102 |
+
return sample
|
103 |
+
|
104 |
+
|
MeshAnything/miche/michelangelo/models/asl_diffusion/base.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class BaseDenoiser(nn.Module):
|
8 |
+
|
9 |
+
def __init__(self):
|
10 |
+
super().__init__()
|
11 |
+
|
12 |
+
def forward(self, x, t, context):
|
13 |
+
raise NotImplementedError
|
MeshAnything/miche/michelangelo/models/asl_diffusion/clip_asl_diffuser_pl_module.py
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from omegaconf import DictConfig
|
4 |
+
from typing import List, Tuple, Dict, Optional, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.optim import lr_scheduler
|
10 |
+
import pytorch_lightning as pl
|
11 |
+
from pytorch_lightning.utilities import rank_zero_only
|
12 |
+
|
13 |
+
from diffusers.schedulers import (
|
14 |
+
DDPMScheduler,
|
15 |
+
DDIMScheduler,
|
16 |
+
KarrasVeScheduler,
|
17 |
+
DPMSolverMultistepScheduler
|
18 |
+
)
|
19 |
+
|
20 |
+
from MeshAnything.miche.michelangelo.utils import instantiate_from_config
|
21 |
+
from MeshAnything.miche.michelangelo.models.tsal.tsal_base import AlignedShapeAsLatentPLModule
|
22 |
+
from MeshAnything.miche.michelangelo.models.asl_diffusion.inference_utils import ddim_sample
|
23 |
+
|
24 |
+
SchedulerType = Union[DDIMScheduler, KarrasVeScheduler, DPMSolverMultistepScheduler]
|
25 |
+
|
26 |
+
|
27 |
+
def disabled_train(self, mode=True):
|
28 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
29 |
+
does not change anymore."""
|
30 |
+
return self
|
31 |
+
|
32 |
+
|
33 |
+
class ClipASLDiffuser(pl.LightningModule):
|
34 |
+
first_stage_model: Optional[AlignedShapeAsLatentPLModule]
|
35 |
+
cond_stage_model: Optional[Union[nn.Module, pl.LightningModule]]
|
36 |
+
model: nn.Module
|
37 |
+
|
38 |
+
def __init__(self, *,
|
39 |
+
first_stage_config,
|
40 |
+
cond_stage_config,
|
41 |
+
denoiser_cfg,
|
42 |
+
scheduler_cfg,
|
43 |
+
optimizer_cfg,
|
44 |
+
loss_cfg,
|
45 |
+
first_stage_key: str = "surface",
|
46 |
+
cond_stage_key: str = "image",
|
47 |
+
scale_by_std: bool = False,
|
48 |
+
z_scale_factor: float = 1.0,
|
49 |
+
ckpt_path: Optional[str] = None,
|
50 |
+
ignore_keys: Union[Tuple[str], List[str]] = ()):
|
51 |
+
|
52 |
+
super().__init__()
|
53 |
+
|
54 |
+
self.first_stage_key = first_stage_key
|
55 |
+
self.cond_stage_key = cond_stage_key
|
56 |
+
|
57 |
+
# 1. lazy initialize first stage
|
58 |
+
self.instantiate_first_stage(first_stage_config)
|
59 |
+
|
60 |
+
# 2. initialize conditional stage
|
61 |
+
self.instantiate_cond_stage(cond_stage_config)
|
62 |
+
|
63 |
+
# 3. diffusion model
|
64 |
+
self.model = instantiate_from_config(
|
65 |
+
denoiser_cfg, device=None, dtype=None
|
66 |
+
)
|
67 |
+
|
68 |
+
self.optimizer_cfg = optimizer_cfg
|
69 |
+
|
70 |
+
# 4. scheduling strategy
|
71 |
+
self.scheduler_cfg = scheduler_cfg
|
72 |
+
|
73 |
+
self.noise_scheduler: DDPMScheduler = instantiate_from_config(scheduler_cfg.noise)
|
74 |
+
self.denoise_scheduler: SchedulerType = instantiate_from_config(scheduler_cfg.denoise)
|
75 |
+
|
76 |
+
# 5. loss configures
|
77 |
+
self.loss_cfg = loss_cfg
|
78 |
+
|
79 |
+
self.scale_by_std = scale_by_std
|
80 |
+
if scale_by_std:
|
81 |
+
self.register_buffer("z_scale_factor", torch.tensor(z_scale_factor))
|
82 |
+
else:
|
83 |
+
self.z_scale_factor = z_scale_factor
|
84 |
+
|
85 |
+
self.ckpt_path = ckpt_path
|
86 |
+
if ckpt_path is not None:
|
87 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
88 |
+
|
89 |
+
def instantiate_non_trainable_model(self, config):
|
90 |
+
model = instantiate_from_config(config)
|
91 |
+
model = model.eval()
|
92 |
+
model.train = disabled_train
|
93 |
+
for param in model.parameters():
|
94 |
+
param.requires_grad = False
|
95 |
+
|
96 |
+
return model
|
97 |
+
|
98 |
+
def instantiate_first_stage(self, first_stage_config):
|
99 |
+
self.first_stage_model = self.instantiate_non_trainable_model(first_stage_config)
|
100 |
+
self.first_stage_model.set_shape_model_only()
|
101 |
+
|
102 |
+
def instantiate_cond_stage(self, cond_stage_config):
|
103 |
+
self.cond_stage_model = self.instantiate_non_trainable_model(cond_stage_config)
|
104 |
+
|
105 |
+
def init_from_ckpt(self, path, ignore_keys=()):
|
106 |
+
state_dict = torch.load(path, map_location="cpu")["state_dict"]
|
107 |
+
|
108 |
+
keys = list(state_dict.keys())
|
109 |
+
for k in keys:
|
110 |
+
for ik in ignore_keys:
|
111 |
+
if k.startswith(ik):
|
112 |
+
print("Deleting key {} from state_dict.".format(k))
|
113 |
+
del state_dict[k]
|
114 |
+
|
115 |
+
missing, unexpected = self.load_state_dict(state_dict, strict=False)
|
116 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
117 |
+
if len(missing) > 0:
|
118 |
+
print(f"Missing Keys: {missing}")
|
119 |
+
print(f"Unexpected Keys: {unexpected}")
|
120 |
+
|
121 |
+
@property
|
122 |
+
def zero_rank(self):
|
123 |
+
if self._trainer:
|
124 |
+
zero_rank = self.trainer.local_rank == 0
|
125 |
+
else:
|
126 |
+
zero_rank = True
|
127 |
+
|
128 |
+
return zero_rank
|
129 |
+
|
130 |
+
def configure_optimizers(self) -> Tuple[List, List]:
|
131 |
+
|
132 |
+
lr = self.learning_rate
|
133 |
+
|
134 |
+
trainable_parameters = list(self.model.parameters())
|
135 |
+
if self.optimizer_cfg is None:
|
136 |
+
optimizers = [torch.optim.AdamW(trainable_parameters, lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
137 |
+
schedulers = []
|
138 |
+
else:
|
139 |
+
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=trainable_parameters)
|
140 |
+
scheduler_func = instantiate_from_config(
|
141 |
+
self.optimizer_cfg.scheduler,
|
142 |
+
max_decay_steps=self.trainer.max_steps,
|
143 |
+
lr_max=lr
|
144 |
+
)
|
145 |
+
scheduler = {
|
146 |
+
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
|
147 |
+
"interval": "step",
|
148 |
+
"frequency": 1
|
149 |
+
}
|
150 |
+
optimizers = [optimizer]
|
151 |
+
schedulers = [scheduler]
|
152 |
+
|
153 |
+
return optimizers, schedulers
|
154 |
+
|
155 |
+
@torch.no_grad()
|
156 |
+
def encode_first_stage(self, surface: torch.FloatTensor, sample_posterior=True):
|
157 |
+
|
158 |
+
z_q = self.first_stage_model.encode(surface, sample_posterior)
|
159 |
+
z_q = self.z_scale_factor * z_q
|
160 |
+
|
161 |
+
return z_q
|
162 |
+
|
163 |
+
@torch.no_grad()
|
164 |
+
def decode_first_stage(self, z_q: torch.FloatTensor, **kwargs):
|
165 |
+
|
166 |
+
z_q = 1. / self.z_scale_factor * z_q
|
167 |
+
latents = self.first_stage_model.decode(z_q, **kwargs)
|
168 |
+
return latents
|
169 |
+
|
170 |
+
@rank_zero_only
|
171 |
+
@torch.no_grad()
|
172 |
+
def on_train_batch_start(self, batch, batch_idx):
|
173 |
+
# only for very first batch
|
174 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 \
|
175 |
+
and batch_idx == 0 and self.ckpt_path is None:
|
176 |
+
# set rescale weight to 1./std of encodings
|
177 |
+
print("### USING STD-RESCALING ###")
|
178 |
+
|
179 |
+
z_q = self.encode_first_stage(batch[self.first_stage_key])
|
180 |
+
z = z_q.detach()
|
181 |
+
|
182 |
+
del self.z_scale_factor
|
183 |
+
self.register_buffer("z_scale_factor", 1. / z.flatten().std())
|
184 |
+
print(f"setting self.z_scale_factor to {self.z_scale_factor}")
|
185 |
+
|
186 |
+
print("### USING STD-RESCALING ###")
|
187 |
+
|
188 |
+
def compute_loss(self, model_outputs, split):
|
189 |
+
"""
|
190 |
+
|
191 |
+
Args:
|
192 |
+
model_outputs (dict):
|
193 |
+
- x_0:
|
194 |
+
- noise:
|
195 |
+
- noise_prior:
|
196 |
+
- noise_pred:
|
197 |
+
- noise_pred_prior:
|
198 |
+
|
199 |
+
split (str):
|
200 |
+
|
201 |
+
Returns:
|
202 |
+
|
203 |
+
"""
|
204 |
+
|
205 |
+
pred = model_outputs["pred"]
|
206 |
+
|
207 |
+
if self.noise_scheduler.prediction_type == "epsilon":
|
208 |
+
target = model_outputs["noise"]
|
209 |
+
elif self.noise_scheduler.prediction_type == "sample":
|
210 |
+
target = model_outputs["x_0"]
|
211 |
+
else:
|
212 |
+
raise NotImplementedError(f"Prediction Type: {self.noise_scheduler.prediction_type} not yet supported.")
|
213 |
+
|
214 |
+
if self.loss_cfg.loss_type == "l1":
|
215 |
+
simple = F.l1_loss(pred, target, reduction="mean")
|
216 |
+
elif self.loss_cfg.loss_type in ["mse", "l2"]:
|
217 |
+
simple = F.mse_loss(pred, target, reduction="mean")
|
218 |
+
else:
|
219 |
+
raise NotImplementedError(f"Loss Type: {self.loss_cfg.loss_type} not yet supported.")
|
220 |
+
|
221 |
+
total_loss = simple
|
222 |
+
|
223 |
+
loss_dict = {
|
224 |
+
f"{split}/total_loss": total_loss.clone().detach(),
|
225 |
+
f"{split}/simple": simple.detach(),
|
226 |
+
}
|
227 |
+
|
228 |
+
return total_loss, loss_dict
|
229 |
+
|
230 |
+
def forward(self, batch):
|
231 |
+
"""
|
232 |
+
|
233 |
+
Args:
|
234 |
+
batch:
|
235 |
+
|
236 |
+
Returns:
|
237 |
+
|
238 |
+
"""
|
239 |
+
|
240 |
+
latents = self.encode_first_stage(batch[self.first_stage_key])
|
241 |
+
conditions = self.cond_stage_model.encode(batch[self.cond_stage_key])
|
242 |
+
|
243 |
+
# Sample noise that we"ll add to the latents
|
244 |
+
# [batch_size, n_token, latent_dim]
|
245 |
+
noise = torch.randn_like(latents)
|
246 |
+
bs = latents.shape[0]
|
247 |
+
# Sample a random timestep for each motion
|
248 |
+
timesteps = torch.randint(
|
249 |
+
0,
|
250 |
+
self.noise_scheduler.config.num_train_timesteps,
|
251 |
+
(bs,),
|
252 |
+
device=latents.device,
|
253 |
+
)
|
254 |
+
timesteps = timesteps.long()
|
255 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
256 |
+
noisy_z = self.noise_scheduler.add_noise(latents, noise, timesteps)
|
257 |
+
|
258 |
+
# diffusion model forward
|
259 |
+
noise_pred = self.model(noisy_z, timesteps, conditions)
|
260 |
+
|
261 |
+
diffusion_outputs = {
|
262 |
+
"x_0": noisy_z,
|
263 |
+
"noise": noise,
|
264 |
+
"pred": noise_pred
|
265 |
+
}
|
266 |
+
|
267 |
+
return diffusion_outputs
|
268 |
+
|
269 |
+
def training_step(self, batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
270 |
+
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
271 |
+
"""
|
272 |
+
|
273 |
+
Args:
|
274 |
+
batch (dict): the batch sample, and it contains:
|
275 |
+
- surface (torch.FloatTensor):
|
276 |
+
- image (torch.FloatTensor): if provide, [bs, 3, h, w], item range [0, 1]
|
277 |
+
- depth (torch.FloatTensor): if provide, [bs, 1, h, w], item range [-1, 1]
|
278 |
+
- normal (torch.FloatTensor): if provide, [bs, 3, h, w], item range [-1, 1]
|
279 |
+
- text (list of str):
|
280 |
+
|
281 |
+
batch_idx (int):
|
282 |
+
|
283 |
+
optimizer_idx (int):
|
284 |
+
|
285 |
+
Returns:
|
286 |
+
loss (torch.FloatTensor):
|
287 |
+
|
288 |
+
"""
|
289 |
+
|
290 |
+
diffusion_outputs = self(batch)
|
291 |
+
|
292 |
+
loss, loss_dict = self.compute_loss(diffusion_outputs, "train")
|
293 |
+
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
294 |
+
|
295 |
+
return loss
|
296 |
+
|
297 |
+
def validation_step(self, batch: Dict[str, torch.FloatTensor],
|
298 |
+
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
299 |
+
"""
|
300 |
+
|
301 |
+
Args:
|
302 |
+
batch (dict): the batch sample, and it contains:
|
303 |
+
- surface_pc (torch.FloatTensor): [n_pts, 4]
|
304 |
+
- surface_feats (torch.FloatTensor): [n_pts, c]
|
305 |
+
- text (list of str):
|
306 |
+
|
307 |
+
batch_idx (int):
|
308 |
+
|
309 |
+
optimizer_idx (int):
|
310 |
+
|
311 |
+
Returns:
|
312 |
+
loss (torch.FloatTensor):
|
313 |
+
|
314 |
+
"""
|
315 |
+
|
316 |
+
diffusion_outputs = self(batch)
|
317 |
+
|
318 |
+
loss, loss_dict = self.compute_loss(diffusion_outputs, "val")
|
319 |
+
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
320 |
+
|
321 |
+
return loss
|
322 |
+
|
323 |
+
@torch.no_grad()
|
324 |
+
def sample(self,
|
325 |
+
batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
326 |
+
sample_times: int = 1,
|
327 |
+
steps: Optional[int] = None,
|
328 |
+
guidance_scale: Optional[float] = None,
|
329 |
+
eta: float = 0.0,
|
330 |
+
return_intermediates: bool = False, **kwargs):
|
331 |
+
|
332 |
+
if steps is None:
|
333 |
+
steps = self.scheduler_cfg.num_inference_steps
|
334 |
+
|
335 |
+
if guidance_scale is None:
|
336 |
+
guidance_scale = self.scheduler_cfg.guidance_scale
|
337 |
+
do_classifier_free_guidance = guidance_scale > 0
|
338 |
+
|
339 |
+
# conditional encode
|
340 |
+
xc = batch[self.cond_stage_key]
|
341 |
+
|
342 |
+
# print(self.first_stage_model.device, self.cond_stage_model.device, self.device)
|
343 |
+
|
344 |
+
cond = self.cond_stage_model(xc)
|
345 |
+
|
346 |
+
if do_classifier_free_guidance:
|
347 |
+
un_cond = self.cond_stage_model.unconditional_embedding(batch_size=len(xc))
|
348 |
+
cond = torch.cat([un_cond, cond], dim=0)
|
349 |
+
|
350 |
+
outputs = []
|
351 |
+
latents = None
|
352 |
+
|
353 |
+
if not return_intermediates:
|
354 |
+
for _ in range(sample_times):
|
355 |
+
sample_loop = ddim_sample(
|
356 |
+
self.denoise_scheduler,
|
357 |
+
self.model,
|
358 |
+
shape=self.first_stage_model.latent_shape,
|
359 |
+
cond=cond,
|
360 |
+
steps=steps,
|
361 |
+
guidance_scale=guidance_scale,
|
362 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
363 |
+
device=self.device,
|
364 |
+
eta=eta,
|
365 |
+
disable_prog=not self.zero_rank
|
366 |
+
)
|
367 |
+
for sample, t in sample_loop:
|
368 |
+
latents = sample
|
369 |
+
outputs.append(self.decode_first_stage(latents, **kwargs))
|
370 |
+
else:
|
371 |
+
|
372 |
+
sample_loop = ddim_sample(
|
373 |
+
self.denoise_scheduler,
|
374 |
+
self.model,
|
375 |
+
shape=self.first_stage_model.latent_shape,
|
376 |
+
cond=cond,
|
377 |
+
steps=steps,
|
378 |
+
guidance_scale=guidance_scale,
|
379 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
380 |
+
device=self.device,
|
381 |
+
eta=eta,
|
382 |
+
disable_prog=not self.zero_rank
|
383 |
+
)
|
384 |
+
|
385 |
+
iter_size = steps // sample_times
|
386 |
+
i = 0
|
387 |
+
for sample, t in sample_loop:
|
388 |
+
latents = sample
|
389 |
+
if i % iter_size == 0 or i == steps - 1:
|
390 |
+
outputs.append(self.decode_first_stage(latents, **kwargs))
|
391 |
+
i += 1
|
392 |
+
|
393 |
+
return outputs
|
MeshAnything/miche/michelangelo/models/asl_diffusion/inference_utils.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from tqdm import tqdm
|
5 |
+
from typing import Tuple, List, Union, Optional
|
6 |
+
from diffusers.schedulers import DDIMScheduler
|
7 |
+
|
8 |
+
|
9 |
+
__all__ = ["ddim_sample"]
|
10 |
+
|
11 |
+
|
12 |
+
def ddim_sample(ddim_scheduler: DDIMScheduler,
|
13 |
+
diffusion_model: torch.nn.Module,
|
14 |
+
shape: Union[List[int], Tuple[int]],
|
15 |
+
cond: torch.FloatTensor,
|
16 |
+
steps: int,
|
17 |
+
eta: float = 0.0,
|
18 |
+
guidance_scale: float = 3.0,
|
19 |
+
do_classifier_free_guidance: bool = True,
|
20 |
+
generator: Optional[torch.Generator] = None,
|
21 |
+
device: torch.device = "cuda:0",
|
22 |
+
disable_prog: bool = True):
|
23 |
+
|
24 |
+
assert steps > 0, f"{steps} must > 0."
|
25 |
+
|
26 |
+
# init latents
|
27 |
+
bsz = cond.shape[0]
|
28 |
+
if do_classifier_free_guidance:
|
29 |
+
bsz = bsz // 2
|
30 |
+
|
31 |
+
latents = torch.randn(
|
32 |
+
(bsz, *shape),
|
33 |
+
generator=generator,
|
34 |
+
device=cond.device,
|
35 |
+
dtype=cond.dtype,
|
36 |
+
)
|
37 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
38 |
+
latents = latents * ddim_scheduler.init_noise_sigma
|
39 |
+
# set timesteps
|
40 |
+
ddim_scheduler.set_timesteps(steps)
|
41 |
+
timesteps = ddim_scheduler.timesteps.to(device)
|
42 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
43 |
+
# eta (η) is only used with the DDIMScheduler, and between [0, 1]
|
44 |
+
extra_step_kwargs = {
|
45 |
+
"eta": eta,
|
46 |
+
"generator": generator
|
47 |
+
}
|
48 |
+
|
49 |
+
# reverse
|
50 |
+
for i, t in enumerate(tqdm(timesteps, disable=disable_prog, desc="DDIM Sampling:", leave=False)):
|
51 |
+
# expand the latents if we are doing classifier free guidance
|
52 |
+
latent_model_input = (
|
53 |
+
torch.cat([latents] * 2)
|
54 |
+
if do_classifier_free_guidance
|
55 |
+
else latents
|
56 |
+
)
|
57 |
+
# latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
58 |
+
# predict the noise residual
|
59 |
+
timestep_tensor = torch.tensor([t], dtype=torch.long, device=device)
|
60 |
+
timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0])
|
61 |
+
noise_pred = diffusion_model.forward(latent_model_input, timestep_tensor, cond)
|
62 |
+
|
63 |
+
# perform guidance
|
64 |
+
if do_classifier_free_guidance:
|
65 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
66 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
67 |
+
noise_pred_text - noise_pred_uncond
|
68 |
+
)
|
69 |
+
# text_embeddings_for_guidance = encoder_hidden_states.chunk(
|
70 |
+
# 2)[1] if do_classifier_free_guidance else encoder_hidden_states
|
71 |
+
# compute the previous noisy sample x_t -> x_t-1
|
72 |
+
latents = ddim_scheduler.step(
|
73 |
+
noise_pred, t, latents, **extra_step_kwargs
|
74 |
+
).prev_sample
|
75 |
+
|
76 |
+
yield latents, t
|
77 |
+
|
78 |
+
|
79 |
+
def karra_sample():
|
80 |
+
pass
|
MeshAnything/miche/michelangelo/models/conditional_encoders/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .clip import CLIPEncoder
|
MeshAnything/miche/michelangelo/models/conditional_encoders/clip.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from torchvision.transforms import Normalize
|
8 |
+
from transformers import CLIPModel, CLIPTokenizer
|
9 |
+
from transformers.utils import ModelOutput
|
10 |
+
from typing import Iterable, Optional, Union, List
|
11 |
+
|
12 |
+
|
13 |
+
ImageType = Union[np.ndarray, torch.Tensor, Image.Image]
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class CLIPEmbedOutput(ModelOutput):
|
18 |
+
last_hidden_state: torch.FloatTensor = None
|
19 |
+
pooler_output: torch.FloatTensor = None
|
20 |
+
embeds: torch.FloatTensor = None
|
21 |
+
|
22 |
+
|
23 |
+
class CLIPEncoder(torch.nn.Module):
|
24 |
+
|
25 |
+
def __init__(self, model_path="openai/clip-vit-base-patch32"):
|
26 |
+
|
27 |
+
super().__init__()
|
28 |
+
|
29 |
+
# Load the CLIP model and processor
|
30 |
+
self.model: CLIPModel = CLIPModel.from_pretrained(model_path)
|
31 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(model_path)
|
32 |
+
self.image_preprocess = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
33 |
+
|
34 |
+
self.model.training = False
|
35 |
+
for p in self.model.parameters():
|
36 |
+
p.requires_grad = False
|
37 |
+
|
38 |
+
@torch.no_grad()
|
39 |
+
def encode_image(self, images: Iterable[Optional[ImageType]]):
|
40 |
+
pixel_values = self.image_preprocess(images)
|
41 |
+
|
42 |
+
vision_outputs = self.model.vision_model(pixel_values=pixel_values)
|
43 |
+
|
44 |
+
pooler_output = vision_outputs[1] # pooled_output
|
45 |
+
image_features = self.model.visual_projection(pooler_output)
|
46 |
+
|
47 |
+
visual_embeds = CLIPEmbedOutput(
|
48 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
49 |
+
pooler_output=pooler_output,
|
50 |
+
embeds=image_features
|
51 |
+
)
|
52 |
+
|
53 |
+
return visual_embeds
|
54 |
+
|
55 |
+
@torch.no_grad()
|
56 |
+
def encode_text(self, texts: List[str]):
|
57 |
+
text_inputs = self.tokenizer(texts, padding=True, return_tensors="pt")
|
58 |
+
|
59 |
+
text_outputs = self.model.text_model(input_ids=text_inputs)
|
60 |
+
|
61 |
+
pooler_output = text_outputs[1] # pooled_output
|
62 |
+
text_features = self.model.text_projection(pooler_output)
|
63 |
+
|
64 |
+
text_embeds = CLIPEmbedOutput(
|
65 |
+
last_hidden_state=text_outputs.last_hidden_state,
|
66 |
+
pooler_output=pooler_output,
|
67 |
+
embeds=text_features
|
68 |
+
)
|
69 |
+
|
70 |
+
return text_embeds
|
71 |
+
|
72 |
+
def forward(self,
|
73 |
+
images: Iterable[Optional[ImageType]],
|
74 |
+
texts: List[str]):
|
75 |
+
|
76 |
+
visual_embeds = self.encode_image(images)
|
77 |
+
text_embeds = self.encode_text(texts)
|
78 |
+
|
79 |
+
return visual_embeds, text_embeds
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
MeshAnything/miche/michelangelo/models/conditional_encoders/encoder_factory.py
ADDED
@@ -0,0 +1,562 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import os
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torchvision import transforms
|
7 |
+
from transformers import CLIPModel, CLIPTokenizer
|
8 |
+
from collections import OrderedDict
|
9 |
+
|
10 |
+
from MeshAnything.miche.michelangelo.data.transforms import RandomResize
|
11 |
+
|
12 |
+
|
13 |
+
class AbstractEncoder(nn.Module):
|
14 |
+
embedding_dim: int
|
15 |
+
|
16 |
+
def __init__(self):
|
17 |
+
super().__init__()
|
18 |
+
|
19 |
+
def encode(self, *args, **kwargs):
|
20 |
+
raise NotImplementedError
|
21 |
+
|
22 |
+
|
23 |
+
class ClassEmbedder(nn.Module):
|
24 |
+
def __init__(self, embed_dim, n_classes=1000, key="class"):
|
25 |
+
super().__init__()
|
26 |
+
self.key = key
|
27 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
28 |
+
|
29 |
+
def forward(self, batch, key=None):
|
30 |
+
if key is None:
|
31 |
+
key = self.key
|
32 |
+
# this is for use in crossattn
|
33 |
+
c = batch[key][:, None]
|
34 |
+
c = self.embedding(c)
|
35 |
+
return c
|
36 |
+
|
37 |
+
|
38 |
+
class FrozenCLIPTextEmbedder(AbstractEncoder):
|
39 |
+
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
version="openai/clip-vit-large-patch14",
|
44 |
+
tokenizer_version=None,
|
45 |
+
device="cuda",
|
46 |
+
max_length=77,
|
47 |
+
zero_embedding_radio: float = 0.1,
|
48 |
+
):
|
49 |
+
super().__init__()
|
50 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_version or version)
|
51 |
+
|
52 |
+
self.device = device
|
53 |
+
self.max_length = max_length
|
54 |
+
self.zero_embedding_radio = zero_embedding_radio
|
55 |
+
|
56 |
+
self.clip_dict = OrderedDict()
|
57 |
+
self.clip_name = os.path.split(version)[-1]
|
58 |
+
|
59 |
+
transformer = CLIPModel.from_pretrained(version).text_model
|
60 |
+
|
61 |
+
for param in transformer.parameters():
|
62 |
+
param.requires_grad = False
|
63 |
+
self.clip_dict[self.clip_name] = transformer
|
64 |
+
|
65 |
+
self._move_flag = False
|
66 |
+
|
67 |
+
@property
|
68 |
+
def clip(self):
|
69 |
+
return self.clip_dict[self.clip_name]
|
70 |
+
|
71 |
+
def move(self):
|
72 |
+
if self._move_flag:
|
73 |
+
return
|
74 |
+
|
75 |
+
self.clip_dict[self.clip_name] = self.clip_dict[self.clip_name].to(self.device)
|
76 |
+
self._move_flag = True
|
77 |
+
|
78 |
+
def unconditional_embedding(self, batch_size):
|
79 |
+
empty_text = [""] * batch_size
|
80 |
+
empty_z = self.forward(empty_text)
|
81 |
+
return empty_z
|
82 |
+
|
83 |
+
def forward(self, text):
|
84 |
+
self.move()
|
85 |
+
|
86 |
+
batch_encoding = self.tokenizer(
|
87 |
+
text,
|
88 |
+
truncation=True,
|
89 |
+
max_length=self.max_length,
|
90 |
+
return_length=True,
|
91 |
+
return_overflowing_tokens=False,
|
92 |
+
padding="max_length",
|
93 |
+
return_tensors="pt",
|
94 |
+
)
|
95 |
+
|
96 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
97 |
+
outputs = self.clip(input_ids=tokens)
|
98 |
+
|
99 |
+
z = outputs.last_hidden_state
|
100 |
+
return z
|
101 |
+
|
102 |
+
def encode(self, text):
|
103 |
+
batch_size = len(text)
|
104 |
+
batch_mask = torch.rand((batch_size,))
|
105 |
+
for i in range(batch_size):
|
106 |
+
if batch_mask[i] < self.zero_embedding_radio:
|
107 |
+
text[i] = ""
|
108 |
+
|
109 |
+
return self(text)
|
110 |
+
|
111 |
+
class FrozenAlignedCLIPTextEmbedder(AbstractEncoder):
|
112 |
+
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
113 |
+
|
114 |
+
def __init__(
|
115 |
+
self,
|
116 |
+
version="openai/clip-vit-large-patch14",
|
117 |
+
tokenizer_version=None,
|
118 |
+
device="cuda",
|
119 |
+
max_length=77,
|
120 |
+
zero_embedding_radio: float = 0.1,
|
121 |
+
):
|
122 |
+
super().__init__()
|
123 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_version or version)
|
124 |
+
|
125 |
+
self.device = device
|
126 |
+
self.max_length = max_length
|
127 |
+
self.zero_embedding_radio = zero_embedding_radio
|
128 |
+
|
129 |
+
self.clip_dict = OrderedDict()
|
130 |
+
self.clip_name = os.path.split(version)[-1]
|
131 |
+
|
132 |
+
transformer = CLIPModel.from_pretrained(version).text_model
|
133 |
+
|
134 |
+
for param in transformer.parameters():
|
135 |
+
param.requires_grad = False
|
136 |
+
self.clip_dict[self.clip_name] = transformer
|
137 |
+
|
138 |
+
self._move_flag = False
|
139 |
+
|
140 |
+
@property
|
141 |
+
def clip(self):
|
142 |
+
return self.clip_dict[self.clip_name]
|
143 |
+
|
144 |
+
def move(self):
|
145 |
+
if self._move_flag:
|
146 |
+
return
|
147 |
+
|
148 |
+
self.clip_dict[self.clip_name] = self.clip_dict[self.clip_name].to(self.device)
|
149 |
+
self._move_flag = True
|
150 |
+
|
151 |
+
def unconditional_embedding(self, batch_size):
|
152 |
+
empty_text = [""] * batch_size
|
153 |
+
empty_z = self.forward(empty_text)
|
154 |
+
return empty_z
|
155 |
+
|
156 |
+
def forward(self, text):
|
157 |
+
self.move()
|
158 |
+
|
159 |
+
batch_encoding = self.tokenizer(
|
160 |
+
text,
|
161 |
+
truncation=True,
|
162 |
+
max_length=self.max_length,
|
163 |
+
return_length=True,
|
164 |
+
return_overflowing_tokens=False,
|
165 |
+
padding="max_length",
|
166 |
+
return_tensors="pt",
|
167 |
+
)
|
168 |
+
|
169 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
170 |
+
outputs = self.clip(input_ids=tokens)
|
171 |
+
|
172 |
+
z = outputs.last_hidden_state
|
173 |
+
return z
|
174 |
+
|
175 |
+
def encode(self, text):
|
176 |
+
batch_size = len(text)
|
177 |
+
batch_mask = torch.rand((batch_size,))
|
178 |
+
for i in range(batch_size):
|
179 |
+
if batch_mask[i] < self.zero_embedding_radio:
|
180 |
+
text[i] = ""
|
181 |
+
|
182 |
+
return self(text)
|
183 |
+
|
184 |
+
|
185 |
+
class FrozenCLIPImageEmbedder(AbstractEncoder):
|
186 |
+
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
187 |
+
|
188 |
+
def __init__(
|
189 |
+
self,
|
190 |
+
version="openai/clip-vit-large-patch14",
|
191 |
+
device="cuda",
|
192 |
+
zero_embedding_radio=0.1,
|
193 |
+
normalize_embedding=True,
|
194 |
+
num_projection_vector=0,
|
195 |
+
linear_mapping_bias=True,
|
196 |
+
reverse_visual_projection=False,
|
197 |
+
):
|
198 |
+
super().__init__()
|
199 |
+
|
200 |
+
self.device = device
|
201 |
+
|
202 |
+
self.clip_dict = OrderedDict()
|
203 |
+
self.clip_name = os.path.split(version)[-1]
|
204 |
+
|
205 |
+
clip_model = CLIPModel.from_pretrained(version)
|
206 |
+
clip_model.text_model = None
|
207 |
+
clip_model.text_projection = None
|
208 |
+
clip_model = clip_model.eval()
|
209 |
+
for param in self.parameters():
|
210 |
+
param.requires_grad = False
|
211 |
+
self.clip_dict[self.clip_name] = clip_model
|
212 |
+
|
213 |
+
self.transform = transforms.Compose(
|
214 |
+
[
|
215 |
+
transforms.Resize(224, transforms.InterpolationMode.BICUBIC, antialias=True),
|
216 |
+
transforms.CenterCrop(224), # crop a (224, 224) square
|
217 |
+
transforms.Normalize(
|
218 |
+
mean=[0.48145466, 0.4578275, 0.40821073],
|
219 |
+
std=[0.26862954, 0.26130258, 0.27577711],
|
220 |
+
),
|
221 |
+
]
|
222 |
+
)
|
223 |
+
self.zero_embedding_radio = zero_embedding_radio
|
224 |
+
|
225 |
+
self.num_projection_vector = num_projection_vector
|
226 |
+
self.reverse_visual_projection = reverse_visual_projection
|
227 |
+
self.normalize_embedding = normalize_embedding
|
228 |
+
|
229 |
+
embedding_dim = (
|
230 |
+
clip_model.visual_projection.in_features
|
231 |
+
if reverse_visual_projection
|
232 |
+
else clip_model.visual_projection.out_features
|
233 |
+
)
|
234 |
+
self.embedding_dim = embedding_dim
|
235 |
+
if self.num_projection_vector > 0:
|
236 |
+
self.projection = nn.Linear(
|
237 |
+
embedding_dim,
|
238 |
+
clip_model.visual_projection.out_features * num_projection_vector,
|
239 |
+
bias=linear_mapping_bias,
|
240 |
+
)
|
241 |
+
nn.init.normal_(self.projection.weight, std=embedding_dim ** -0.5)
|
242 |
+
|
243 |
+
self._move_flag = False
|
244 |
+
|
245 |
+
@property
|
246 |
+
def clip(self):
|
247 |
+
return self.clip_dict[self.clip_name]
|
248 |
+
|
249 |
+
def unconditional_embedding(self, batch_size):
|
250 |
+
zero = torch.zeros(
|
251 |
+
batch_size,
|
252 |
+
1,
|
253 |
+
self.embedding_dim,
|
254 |
+
device=self.device,
|
255 |
+
dtype=self.clip.visual_projection.weight.dtype,
|
256 |
+
)
|
257 |
+
if self.num_projection_vector > 0:
|
258 |
+
zero = self.projection(zero).view(batch_size, self.num_projection_vector, -1)
|
259 |
+
return zero
|
260 |
+
|
261 |
+
def forward(self, image, value_range=(-1, 1), zero_embedding_radio=0):
|
262 |
+
if value_range is not None:
|
263 |
+
low, high = value_range
|
264 |
+
image = (image - low) / (high - low)
|
265 |
+
|
266 |
+
image = image.to(self.device, dtype=self.clip.visual_projection.weight.dtype)
|
267 |
+
|
268 |
+
if self.reverse_visual_projection:
|
269 |
+
z = self.clip.vision_model(self.transform(image))[1]
|
270 |
+
else:
|
271 |
+
z = self.clip.get_image_features(self.transform(image))
|
272 |
+
|
273 |
+
if self.normalize_embedding:
|
274 |
+
z = z / z.norm(dim=-1, keepdim=True)
|
275 |
+
if z.ndim == 2:
|
276 |
+
z = z.unsqueeze(dim=-2)
|
277 |
+
|
278 |
+
if zero_embedding_radio > 0:
|
279 |
+
mask = torch.rand((len(image), 1, 1), device=z.device, dtype=z.dtype) < zero_embedding_radio
|
280 |
+
z = z * mask.to(z)
|
281 |
+
|
282 |
+
if self.num_projection_vector > 0:
|
283 |
+
z = self.projection(z).view(len(image), self.num_projection_vector, -1)
|
284 |
+
|
285 |
+
return z
|
286 |
+
|
287 |
+
def move(self):
|
288 |
+
if self._move_flag:
|
289 |
+
return
|
290 |
+
|
291 |
+
self.clip_dict[self.clip_name] = self.clip_dict[self.clip_name].to(self.device)
|
292 |
+
self._move_flag = True
|
293 |
+
|
294 |
+
def encode(self, image):
|
295 |
+
self.move()
|
296 |
+
return self(image, zero_embedding_radio=self.zero_embedding_radio)
|
297 |
+
|
298 |
+
|
299 |
+
class FrozenCLIPImageGridEmbedder(AbstractEncoder):
|
300 |
+
|
301 |
+
def __init__(
|
302 |
+
self,
|
303 |
+
version="openai/clip-vit-large-patch14",
|
304 |
+
device="cuda",
|
305 |
+
zero_embedding_radio=0.1,
|
306 |
+
):
|
307 |
+
super().__init__()
|
308 |
+
|
309 |
+
self.device = device
|
310 |
+
|
311 |
+
self.clip_dict = OrderedDict()
|
312 |
+
self.clip_name = os.path.split(version)[-1]
|
313 |
+
|
314 |
+
clip_model: CLIPModel = CLIPModel.from_pretrained(version)
|
315 |
+
clip_model.text_model = None
|
316 |
+
clip_model.text_projection = None
|
317 |
+
clip_model = clip_model.eval()
|
318 |
+
for param in self.parameters():
|
319 |
+
param.requires_grad = False
|
320 |
+
self.clip_dict[self.clip_name] = clip_model
|
321 |
+
|
322 |
+
self.transform = transforms.Compose(
|
323 |
+
[
|
324 |
+
transforms.Resize(224, transforms.InterpolationMode.BILINEAR, antialias=True),
|
325 |
+
transforms.CenterCrop(224), # crop a (224, 224) square
|
326 |
+
transforms.Normalize(
|
327 |
+
mean=[0.48145466, 0.4578275, 0.40821073],
|
328 |
+
std=[0.26862954, 0.26130258, 0.27577711],
|
329 |
+
),
|
330 |
+
]
|
331 |
+
)
|
332 |
+
self.zero_embedding_radio = zero_embedding_radio
|
333 |
+
self.embedding_dim = clip_model.vision_embed_dim
|
334 |
+
|
335 |
+
self._move_flag = False
|
336 |
+
|
337 |
+
@property
|
338 |
+
def clip(self):
|
339 |
+
return self.clip_dict[self.clip_name]
|
340 |
+
|
341 |
+
def move(self):
|
342 |
+
if self._move_flag:
|
343 |
+
return
|
344 |
+
|
345 |
+
self.clip_dict[self.clip_name] = self.clip_dict[self.clip_name].to(self.device)
|
346 |
+
self._move_flag = True
|
347 |
+
|
348 |
+
def unconditional_embedding(self, batch_size):
|
349 |
+
zero = torch.zeros(
|
350 |
+
batch_size,
|
351 |
+
self.clip.vision_model.embeddings.num_positions,
|
352 |
+
self.embedding_dim,
|
353 |
+
device=self.device,
|
354 |
+
dtype=self.clip.visual_projection.weight.dtype,
|
355 |
+
)
|
356 |
+
return zero
|
357 |
+
|
358 |
+
def forward(self, image, value_range=(-1, 1), zero_embedding_radio=0):
|
359 |
+
self.move()
|
360 |
+
|
361 |
+
if value_range is not None:
|
362 |
+
low, high = value_range
|
363 |
+
image = (image - low) / (high - low)
|
364 |
+
|
365 |
+
image = image.to(self.device, dtype=self.clip.visual_projection.weight.dtype)
|
366 |
+
|
367 |
+
z = self.clip.vision_model(self.transform(image)).last_hidden_state
|
368 |
+
|
369 |
+
if zero_embedding_radio > 0:
|
370 |
+
mask = torch.rand((len(image), 1, 1), device=z.device, dtype=z.dtype) >= zero_embedding_radio
|
371 |
+
z = z * mask.to(z)
|
372 |
+
|
373 |
+
return z
|
374 |
+
|
375 |
+
def encode(self, image):
|
376 |
+
return self(image, zero_embedding_radio=self.zero_embedding_radio)
|
377 |
+
|
378 |
+
|
379 |
+
class MoECLIPImageEncoder(nn.Module):
|
380 |
+
def __init__(
|
381 |
+
self,
|
382 |
+
versions,
|
383 |
+
hidden_state_dim,
|
384 |
+
num_projection_vector=8,
|
385 |
+
zero_embedding_radio=0.1,
|
386 |
+
device="cuda",
|
387 |
+
precision="fp16",
|
388 |
+
normalize=False,
|
389 |
+
clip_max=0,
|
390 |
+
transform_type="base",
|
391 |
+
argument_p=0.2,
|
392 |
+
):
|
393 |
+
super().__init__()
|
394 |
+
|
395 |
+
self.device = torch.device(device)
|
396 |
+
self.hidden_state_dim = hidden_state_dim
|
397 |
+
self.zero_embedding_radio = zero_embedding_radio
|
398 |
+
self.num_projection_vector = num_projection_vector
|
399 |
+
self.dtype = dict(fp16=torch.float16, fp32=torch.float32, bf16=torch.bfloat16)[precision]
|
400 |
+
self.normalize = normalize
|
401 |
+
self.clip_max = clip_max
|
402 |
+
|
403 |
+
if transform_type == "base":
|
404 |
+
self.transform = transforms.Compose(
|
405 |
+
[
|
406 |
+
transforms.Resize(224, transforms.InterpolationMode.BICUBIC, antialias=True),
|
407 |
+
transforms.CenterCrop(224), # crop a (224, 224) square
|
408 |
+
transforms.Normalize(
|
409 |
+
mean=[0.48145466, 0.4578275, 0.40821073],
|
410 |
+
std=[0.26862954, 0.26130258, 0.27577711],
|
411 |
+
),
|
412 |
+
]
|
413 |
+
)
|
414 |
+
elif transform_type == "crop_blur_resize":
|
415 |
+
self.transform = transforms.Compose(
|
416 |
+
[
|
417 |
+
transforms.Resize(224, transforms.InterpolationMode.BICUBIC, antialias=True),
|
418 |
+
transforms.CenterCrop(224), # crop a (224, 224) square
|
419 |
+
transforms.RandomApply(
|
420 |
+
transforms=[
|
421 |
+
transforms.RandomResizedCrop(
|
422 |
+
size=224,
|
423 |
+
scale=(0.8, 1.0),
|
424 |
+
ratio=(0.99, 1.01),
|
425 |
+
interpolation=transforms.InterpolationMode.BICUBIC,
|
426 |
+
),
|
427 |
+
],
|
428 |
+
p=argument_p,
|
429 |
+
),
|
430 |
+
transforms.RandomApply(
|
431 |
+
transforms=[
|
432 |
+
transforms.GaussianBlur(kernel_size=9, sigma=(0.1, 5)),
|
433 |
+
],
|
434 |
+
p=argument_p,
|
435 |
+
),
|
436 |
+
transforms.RandomApply(
|
437 |
+
transforms=[
|
438 |
+
RandomResize(size=224, resize_radio=(0.2, 1)),
|
439 |
+
],
|
440 |
+
p=argument_p,
|
441 |
+
),
|
442 |
+
transforms.Normalize(
|
443 |
+
mean=[0.48145466, 0.4578275, 0.40821073],
|
444 |
+
std=[0.26862954, 0.26130258, 0.27577711],
|
445 |
+
),
|
446 |
+
]
|
447 |
+
)
|
448 |
+
else:
|
449 |
+
raise ValueError(f"invalid {transform_type=}")
|
450 |
+
|
451 |
+
if isinstance(versions, str):
|
452 |
+
versions = (versions,)
|
453 |
+
|
454 |
+
# 如果直接把clips定位为当前类的子module,1. 会在保存ckp时存无用的多个权重。 2. pl会调用to,导致layer_norm的权重也被转换成fp16
|
455 |
+
clips = OrderedDict()
|
456 |
+
|
457 |
+
for v in versions:
|
458 |
+
# 因为clips不是子module,直接指定device="cuda"会错误地导致clip模型权重都被放到cuda:0上。
|
459 |
+
clips[v], _ = clip.load(name=v, device="cpu", jit=False, download_root=None)
|
460 |
+
delattr(clips[v], "transformer")
|
461 |
+
clips[v].eval()
|
462 |
+
clips[v].requires_grad_(False)
|
463 |
+
|
464 |
+
self.clips_hidden_dim = sum(clips[v].ln_final.weight.size(0) for v in clips)
|
465 |
+
|
466 |
+
if self.num_projection_vector == 0:
|
467 |
+
self.projection = nn.Identity()
|
468 |
+
else:
|
469 |
+
self.projection = nn.Linear(self.clips_hidden_dim, hidden_state_dim * self.num_projection_vector, bias=True)
|
470 |
+
self.projection.to(dtype=self.dtype)
|
471 |
+
nn.init.normal_(self.projection.weight, std=self.clips_hidden_dim ** -0.5)
|
472 |
+
|
473 |
+
self.clips = clips
|
474 |
+
|
475 |
+
self._move_flag = False
|
476 |
+
|
477 |
+
def move(self):
|
478 |
+
if self._move_flag:
|
479 |
+
return
|
480 |
+
|
481 |
+
def convert_weights(model: nn.Module):
|
482 |
+
"""Convert applicable model parameters to fp16"""
|
483 |
+
|
484 |
+
def _convert_weights_to_fp16(l):
|
485 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
486 |
+
l.weight.data = l.weight.data.type(self.dtype)
|
487 |
+
if l.bias is not None:
|
488 |
+
l.bias.data = l.bias.data.type(self.dtype)
|
489 |
+
|
490 |
+
if isinstance(l, nn.MultiheadAttention):
|
491 |
+
for attr in [
|
492 |
+
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
|
493 |
+
"in_proj_bias",
|
494 |
+
"bias_k",
|
495 |
+
"bias_v",
|
496 |
+
]:
|
497 |
+
tensor = getattr(l, attr)
|
498 |
+
if tensor is not None:
|
499 |
+
tensor.data = tensor.data.type(self.dtype)
|
500 |
+
|
501 |
+
for name in ["text_projection", "proj"]:
|
502 |
+
if hasattr(l, name):
|
503 |
+
attr = getattr(l, name)
|
504 |
+
if attr is not None:
|
505 |
+
attr.data = attr.data.type(self.dtype)
|
506 |
+
|
507 |
+
model.apply(_convert_weights_to_fp16)
|
508 |
+
|
509 |
+
for k in self.clips:
|
510 |
+
self.clips[k].to(self.device)
|
511 |
+
convert_weights(self.clips[k]) # fp32 -> self.dtype
|
512 |
+
self._move_flag = True
|
513 |
+
|
514 |
+
def unconditional_embedding(self, batch_size=None):
|
515 |
+
zero = torch.zeros(
|
516 |
+
batch_size,
|
517 |
+
self.clips_hidden_dim,
|
518 |
+
device=self.device,
|
519 |
+
dtype=self.dtype,
|
520 |
+
)
|
521 |
+
if self.num_projection_vector > 0:
|
522 |
+
zero = self.projection(zero).view(batch_size, self.num_projection_vector, -1)
|
523 |
+
return zero
|
524 |
+
|
525 |
+
def convert_embedding(self, z):
|
526 |
+
if self.num_projection_vector > 0:
|
527 |
+
z = self.projection(z.type(self.projection.weight.dtype)).view(len(z), self.num_projection_vector, -1)
|
528 |
+
return z
|
529 |
+
|
530 |
+
def forward(self, image, value_range=(-1, 1), zero_embedding_radio=0):
|
531 |
+
if value_range is not None:
|
532 |
+
low, high = value_range
|
533 |
+
image = (image - low) / (high - low)
|
534 |
+
|
535 |
+
image = self.transform(image)
|
536 |
+
|
537 |
+
with torch.no_grad():
|
538 |
+
embs = []
|
539 |
+
for v in self.clips:
|
540 |
+
x = self.clips[v].encode_image(image)
|
541 |
+
if self.normalize:
|
542 |
+
x = x / x.norm(p=2, dim=-1, keepdim=True) * (x.size(-1) ** 0.5)
|
543 |
+
# clip_max only works with normalization
|
544 |
+
if self.clip_max > 0:
|
545 |
+
x = x.clamp(-self.clip_max, self.clip_max)
|
546 |
+
embs.append(x)
|
547 |
+
|
548 |
+
z = torch.cat(embs, dim=-1)
|
549 |
+
if self.normalize:
|
550 |
+
z /= z.size(-1) ** 0.5
|
551 |
+
|
552 |
+
if zero_embedding_radio > 0:
|
553 |
+
mask = torch.rand((len(image), 1, 1), device=z.device, dtype=z.dtype) >= zero_embedding_radio
|
554 |
+
z = z + mask.to(z)
|
555 |
+
|
556 |
+
if self.num_projection_vector > 0:
|
557 |
+
z = self.projection(z).view(len(image), self.num_projection_vector, -1)
|
558 |
+
return z
|
559 |
+
|
560 |
+
def encode(self, image):
|
561 |
+
self.move()
|
562 |
+
return self(image, zero_embedding_radio=self.zero_embedding_radio)
|
MeshAnything/miche/michelangelo/models/modules/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .checkpoint import checkpoint
|
MeshAnything/miche/michelangelo/models/modules/checkpoint.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Adapted from: https://github.com/openai/guided-diffusion/blob/22e0df8183507e13a7813f8d38d51b072ca1e67c/guided_diffusion/nn.py#L124
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from typing import Callable, Iterable, Sequence, Union
|
8 |
+
|
9 |
+
|
10 |
+
def checkpoint(
|
11 |
+
func: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor]]],
|
12 |
+
inputs: Sequence[torch.Tensor],
|
13 |
+
params: Iterable[torch.Tensor],
|
14 |
+
flag: bool,
|
15 |
+
use_deepspeed: bool = False
|
16 |
+
):
|
17 |
+
"""
|
18 |
+
Evaluate a function without caching intermediate activations, allowing for
|
19 |
+
reduced memory at the expense of extra compute in the backward pass.
|
20 |
+
:param func: the function to evaluate.
|
21 |
+
:param inputs: the argument sequence to pass to `func`.
|
22 |
+
:param params: a sequence of parameters `func` depends on but does not
|
23 |
+
explicitly take as arguments.
|
24 |
+
:param flag: if False, disable gradient checkpointing.
|
25 |
+
:param use_deepspeed: if True, use deepspeed
|
26 |
+
"""
|
27 |
+
if flag:
|
28 |
+
if use_deepspeed:
|
29 |
+
import deepspeed
|
30 |
+
return deepspeed.checkpointing.checkpoint(func, *inputs)
|
31 |
+
|
32 |
+
args = tuple(inputs) + tuple(params)
|
33 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
34 |
+
else:
|
35 |
+
return func(*inputs)
|
36 |
+
|
37 |
+
|
38 |
+
class CheckpointFunction(torch.autograd.Function):
|
39 |
+
@staticmethod
|
40 |
+
@torch.cuda.amp.custom_fwd
|
41 |
+
def forward(ctx, run_function, length, *args):
|
42 |
+
ctx.run_function = run_function
|
43 |
+
ctx.input_tensors = list(args[:length])
|
44 |
+
ctx.input_params = list(args[length:])
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
48 |
+
return output_tensors
|
49 |
+
|
50 |
+
@staticmethod
|
51 |
+
@torch.cuda.amp.custom_bwd
|
52 |
+
def backward(ctx, *output_grads):
|
53 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
54 |
+
with torch.enable_grad():
|
55 |
+
# Fixes a bug where the first op in run_function modifies the
|
56 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
57 |
+
# Tensors.
|
58 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
59 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
60 |
+
input_grads = torch.autograd.grad(
|
61 |
+
output_tensors,
|
62 |
+
ctx.input_tensors + ctx.input_params,
|
63 |
+
output_grads,
|
64 |
+
allow_unused=True,
|
65 |
+
)
|
66 |
+
del ctx.input_tensors
|
67 |
+
del ctx.input_params
|
68 |
+
del output_tensors
|
69 |
+
return (None, None) + input_grads
|
MeshAnything/miche/michelangelo/models/modules/diffusion_transformer.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import math
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
from MeshAnything.miche.michelangelo.models.modules.checkpoint import checkpoint
|
9 |
+
from MeshAnything.miche.michelangelo.models.modules.transformer_blocks import (
|
10 |
+
init_linear,
|
11 |
+
MLP,
|
12 |
+
MultiheadCrossAttention,
|
13 |
+
MultiheadAttention,
|
14 |
+
ResidualAttentionBlock
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
class AdaLayerNorm(nn.Module):
|
19 |
+
def __init__(self,
|
20 |
+
device: torch.device,
|
21 |
+
dtype: torch.dtype,
|
22 |
+
width: int):
|
23 |
+
|
24 |
+
super().__init__()
|
25 |
+
|
26 |
+
self.silu = nn.SiLU(inplace=True)
|
27 |
+
self.linear = nn.Linear(width, width * 2, device=device, dtype=dtype)
|
28 |
+
self.layernorm = nn.LayerNorm(width, elementwise_affine=False, device=device, dtype=dtype)
|
29 |
+
|
30 |
+
def forward(self, x, timestep):
|
31 |
+
emb = self.linear(timestep)
|
32 |
+
scale, shift = torch.chunk(emb, 2, dim=2)
|
33 |
+
x = self.layernorm(x) * (1 + scale) + shift
|
34 |
+
return x
|
35 |
+
|
36 |
+
|
37 |
+
class DitBlock(nn.Module):
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
*,
|
41 |
+
device: torch.device,
|
42 |
+
dtype: torch.dtype,
|
43 |
+
n_ctx: int,
|
44 |
+
width: int,
|
45 |
+
heads: int,
|
46 |
+
context_dim: int,
|
47 |
+
qkv_bias: bool = False,
|
48 |
+
init_scale: float = 1.0,
|
49 |
+
use_checkpoint: bool = False
|
50 |
+
):
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
self.use_checkpoint = use_checkpoint
|
54 |
+
|
55 |
+
self.attn = MultiheadAttention(
|
56 |
+
device=device,
|
57 |
+
dtype=dtype,
|
58 |
+
n_ctx=n_ctx,
|
59 |
+
width=width,
|
60 |
+
heads=heads,
|
61 |
+
init_scale=init_scale,
|
62 |
+
qkv_bias=qkv_bias
|
63 |
+
)
|
64 |
+
self.ln_1 = AdaLayerNorm(device, dtype, width)
|
65 |
+
|
66 |
+
if context_dim is not None:
|
67 |
+
self.ln_2 = AdaLayerNorm(device, dtype, width)
|
68 |
+
self.cross_attn = MultiheadCrossAttention(
|
69 |
+
device=device,
|
70 |
+
dtype=dtype,
|
71 |
+
width=width,
|
72 |
+
heads=heads,
|
73 |
+
data_width=context_dim,
|
74 |
+
init_scale=init_scale,
|
75 |
+
qkv_bias=qkv_bias
|
76 |
+
)
|
77 |
+
|
78 |
+
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
|
79 |
+
self.ln_3 = AdaLayerNorm(device, dtype, width)
|
80 |
+
|
81 |
+
def forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
|
82 |
+
return checkpoint(self._forward, (x, t, context), self.parameters(), self.use_checkpoint)
|
83 |
+
|
84 |
+
def _forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
|
85 |
+
x = x + self.attn(self.ln_1(x, t))
|
86 |
+
if context is not None:
|
87 |
+
x = x + self.cross_attn(self.ln_2(x, t), context)
|
88 |
+
x = x + self.mlp(self.ln_3(x, t))
|
89 |
+
return x
|
90 |
+
|
91 |
+
|
92 |
+
class DiT(nn.Module):
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
*,
|
96 |
+
device: Optional[torch.device],
|
97 |
+
dtype: Optional[torch.dtype],
|
98 |
+
n_ctx: int,
|
99 |
+
width: int,
|
100 |
+
layers: int,
|
101 |
+
heads: int,
|
102 |
+
context_dim: int,
|
103 |
+
init_scale: float = 0.25,
|
104 |
+
qkv_bias: bool = False,
|
105 |
+
use_checkpoint: bool = False
|
106 |
+
):
|
107 |
+
super().__init__()
|
108 |
+
self.n_ctx = n_ctx
|
109 |
+
self.width = width
|
110 |
+
self.layers = layers
|
111 |
+
|
112 |
+
self.resblocks = nn.ModuleList(
|
113 |
+
[
|
114 |
+
DitBlock(
|
115 |
+
device=device,
|
116 |
+
dtype=dtype,
|
117 |
+
n_ctx=n_ctx,
|
118 |
+
width=width,
|
119 |
+
heads=heads,
|
120 |
+
context_dim=context_dim,
|
121 |
+
qkv_bias=qkv_bias,
|
122 |
+
init_scale=init_scale,
|
123 |
+
use_checkpoint=use_checkpoint
|
124 |
+
)
|
125 |
+
for _ in range(layers)
|
126 |
+
]
|
127 |
+
)
|
128 |
+
|
129 |
+
def forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
|
130 |
+
for block in self.resblocks:
|
131 |
+
x = block(x, t, context)
|
132 |
+
return x
|
133 |
+
|
134 |
+
|
135 |
+
class UNetDiffusionTransformer(nn.Module):
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
*,
|
139 |
+
device: Optional[torch.device],
|
140 |
+
dtype: Optional[torch.dtype],
|
141 |
+
n_ctx: int,
|
142 |
+
width: int,
|
143 |
+
layers: int,
|
144 |
+
heads: int,
|
145 |
+
init_scale: float = 0.25,
|
146 |
+
qkv_bias: bool = False,
|
147 |
+
skip_ln: bool = False,
|
148 |
+
use_checkpoint: bool = False
|
149 |
+
):
|
150 |
+
super().__init__()
|
151 |
+
|
152 |
+
self.n_ctx = n_ctx
|
153 |
+
self.width = width
|
154 |
+
self.layers = layers
|
155 |
+
|
156 |
+
self.encoder = nn.ModuleList()
|
157 |
+
for _ in range(layers):
|
158 |
+
resblock = ResidualAttentionBlock(
|
159 |
+
device=device,
|
160 |
+
dtype=dtype,
|
161 |
+
n_ctx=n_ctx,
|
162 |
+
width=width,
|
163 |
+
heads=heads,
|
164 |
+
init_scale=init_scale,
|
165 |
+
qkv_bias=qkv_bias,
|
166 |
+
use_checkpoint=use_checkpoint
|
167 |
+
)
|
168 |
+
self.encoder.append(resblock)
|
169 |
+
|
170 |
+
self.middle_block = ResidualAttentionBlock(
|
171 |
+
device=device,
|
172 |
+
dtype=dtype,
|
173 |
+
n_ctx=n_ctx,
|
174 |
+
width=width,
|
175 |
+
heads=heads,
|
176 |
+
init_scale=init_scale,
|
177 |
+
qkv_bias=qkv_bias,
|
178 |
+
use_checkpoint=use_checkpoint
|
179 |
+
)
|
180 |
+
|
181 |
+
self.decoder = nn.ModuleList()
|
182 |
+
for _ in range(layers):
|
183 |
+
resblock = ResidualAttentionBlock(
|
184 |
+
device=device,
|
185 |
+
dtype=dtype,
|
186 |
+
n_ctx=n_ctx,
|
187 |
+
width=width,
|
188 |
+
heads=heads,
|
189 |
+
init_scale=init_scale,
|
190 |
+
qkv_bias=qkv_bias,
|
191 |
+
use_checkpoint=use_checkpoint
|
192 |
+
)
|
193 |
+
linear = nn.Linear(width * 2, width, device=device, dtype=dtype)
|
194 |
+
init_linear(linear, init_scale)
|
195 |
+
|
196 |
+
layer_norm = nn.LayerNorm(width, device=device, dtype=dtype) if skip_ln else None
|
197 |
+
|
198 |
+
self.decoder.append(nn.ModuleList([resblock, linear, layer_norm]))
|
199 |
+
|
200 |
+
def forward(self, x: torch.Tensor):
|
201 |
+
|
202 |
+
enc_outputs = []
|
203 |
+
for block in self.encoder:
|
204 |
+
x = block(x)
|
205 |
+
enc_outputs.append(x)
|
206 |
+
|
207 |
+
x = self.middle_block(x)
|
208 |
+
|
209 |
+
for i, (resblock, linear, layer_norm) in enumerate(self.decoder):
|
210 |
+
x = torch.cat([enc_outputs.pop(), x], dim=-1)
|
211 |
+
x = linear(x)
|
212 |
+
|
213 |
+
if layer_norm is not None:
|
214 |
+
x = layer_norm(x)
|
215 |
+
|
216 |
+
x = resblock(x)
|
217 |
+
|
218 |
+
return x
|
MeshAnything/miche/michelangelo/models/modules/distributions.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from typing import Union, List
|
4 |
+
|
5 |
+
|
6 |
+
class AbstractDistribution(object):
|
7 |
+
def sample(self):
|
8 |
+
raise NotImplementedError()
|
9 |
+
|
10 |
+
def mode(self):
|
11 |
+
raise NotImplementedError()
|
12 |
+
|
13 |
+
|
14 |
+
class DiracDistribution(AbstractDistribution):
|
15 |
+
def __init__(self, value):
|
16 |
+
self.value = value
|
17 |
+
|
18 |
+
def sample(self):
|
19 |
+
return self.value
|
20 |
+
|
21 |
+
def mode(self):
|
22 |
+
return self.value
|
23 |
+
|
24 |
+
|
25 |
+
class DiagonalGaussianDistribution(object):
|
26 |
+
def __init__(self, parameters: Union[torch.Tensor, List[torch.Tensor]], deterministic=False, feat_dim=1):
|
27 |
+
self.feat_dim = feat_dim
|
28 |
+
self.parameters = parameters
|
29 |
+
|
30 |
+
if isinstance(parameters, list):
|
31 |
+
self.mean = parameters[0]
|
32 |
+
self.logvar = parameters[1]
|
33 |
+
else:
|
34 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim)
|
35 |
+
|
36 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
37 |
+
self.deterministic = deterministic
|
38 |
+
self.std = torch.exp(0.5 * self.logvar)
|
39 |
+
self.var = torch.exp(self.logvar)
|
40 |
+
if self.deterministic:
|
41 |
+
self.var = self.std = torch.zeros_like(self.mean)
|
42 |
+
|
43 |
+
def sample(self):
|
44 |
+
x = self.mean + self.std * torch.randn_like(self.mean)
|
45 |
+
return x
|
46 |
+
|
47 |
+
def kl(self, other=None, dims=(1, 2, 3)):
|
48 |
+
if self.deterministic:
|
49 |
+
return torch.Tensor([0.])
|
50 |
+
else:
|
51 |
+
if other is None:
|
52 |
+
return 0.5 * torch.mean(torch.pow(self.mean, 2)
|
53 |
+
+ self.var - 1.0 - self.logvar,
|
54 |
+
dim=dims)
|
55 |
+
else:
|
56 |
+
return 0.5 * torch.mean(
|
57 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
58 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
59 |
+
dim=dims)
|
60 |
+
|
61 |
+
def nll(self, sample, dims=(1, 2, 3)):
|
62 |
+
if self.deterministic:
|
63 |
+
return torch.Tensor([0.])
|
64 |
+
logtwopi = np.log(2.0 * np.pi)
|
65 |
+
return 0.5 * torch.sum(
|
66 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
67 |
+
dim=dims)
|
68 |
+
|
69 |
+
def mode(self):
|
70 |
+
return self.mean
|
71 |
+
|
72 |
+
|
73 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
74 |
+
"""
|
75 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
76 |
+
Compute the KL divergence between two gaussians.
|
77 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
78 |
+
scalars, among other use cases.
|
79 |
+
"""
|
80 |
+
tensor = None
|
81 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
82 |
+
if isinstance(obj, torch.Tensor):
|
83 |
+
tensor = obj
|
84 |
+
break
|
85 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
86 |
+
|
87 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
88 |
+
# Tensors, but it does not work for torch.exp().
|
89 |
+
logvar1, logvar2 = [
|
90 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
91 |
+
for x in (logvar1, logvar2)
|
92 |
+
]
|
93 |
+
|
94 |
+
return 0.5 * (
|
95 |
+
-1.0
|
96 |
+
+ logvar2
|
97 |
+
- logvar1
|
98 |
+
+ torch.exp(logvar1 - logvar2)
|
99 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
100 |
+
)
|
MeshAnything/miche/michelangelo/models/modules/embedder.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import math
|
7 |
+
|
8 |
+
VALID_EMBED_TYPES = ["identity", "fourier", "hashgrid", "sphere_harmonic", "triplane_fourier"]
|
9 |
+
|
10 |
+
|
11 |
+
class FourierEmbedder(nn.Module):
|
12 |
+
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
|
13 |
+
each feature dimension of `x[..., i]` into:
|
14 |
+
[
|
15 |
+
sin(x[..., i]),
|
16 |
+
sin(f_1*x[..., i]),
|
17 |
+
sin(f_2*x[..., i]),
|
18 |
+
...
|
19 |
+
sin(f_N * x[..., i]),
|
20 |
+
cos(x[..., i]),
|
21 |
+
cos(f_1*x[..., i]),
|
22 |
+
cos(f_2*x[..., i]),
|
23 |
+
...
|
24 |
+
cos(f_N * x[..., i]),
|
25 |
+
x[..., i] # only present if include_input is True.
|
26 |
+
], here f_i is the frequency.
|
27 |
+
|
28 |
+
Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs].
|
29 |
+
If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...];
|
30 |
+
Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)].
|
31 |
+
|
32 |
+
Args:
|
33 |
+
num_freqs (int): the number of frequencies, default is 6;
|
34 |
+
logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
|
35 |
+
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)];
|
36 |
+
input_dim (int): the input dimension, default is 3;
|
37 |
+
include_input (bool): include the input tensor or not, default is True.
|
38 |
+
|
39 |
+
Attributes:
|
40 |
+
frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
|
41 |
+
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1);
|
42 |
+
|
43 |
+
out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1),
|
44 |
+
otherwise, it is input_dim * num_freqs * 2.
|
45 |
+
|
46 |
+
"""
|
47 |
+
|
48 |
+
def __init__(self,
|
49 |
+
num_freqs: int = 6,
|
50 |
+
logspace: bool = True,
|
51 |
+
input_dim: int = 3,
|
52 |
+
include_input: bool = True,
|
53 |
+
include_pi: bool = True) -> None:
|
54 |
+
|
55 |
+
"""The initialization"""
|
56 |
+
|
57 |
+
super().__init__()
|
58 |
+
|
59 |
+
if logspace:
|
60 |
+
frequencies = 2.0 ** torch.arange(
|
61 |
+
num_freqs,
|
62 |
+
dtype=torch.float32
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
frequencies = torch.linspace(
|
66 |
+
1.0,
|
67 |
+
2.0 ** (num_freqs - 1),
|
68 |
+
num_freqs,
|
69 |
+
dtype=torch.float32
|
70 |
+
)
|
71 |
+
|
72 |
+
if include_pi:
|
73 |
+
frequencies *= torch.pi
|
74 |
+
|
75 |
+
self.register_buffer("frequencies", frequencies, persistent=False)
|
76 |
+
self.include_input = include_input
|
77 |
+
self.num_freqs = num_freqs
|
78 |
+
|
79 |
+
self.out_dim = self.get_dims(input_dim)
|
80 |
+
|
81 |
+
def get_dims(self, input_dim):
|
82 |
+
temp = 1 if self.include_input or self.num_freqs == 0 else 0
|
83 |
+
out_dim = input_dim * (self.num_freqs * 2 + temp)
|
84 |
+
|
85 |
+
return out_dim
|
86 |
+
|
87 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
88 |
+
""" Forward process.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
x: tensor of shape [..., dim]
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)]
|
95 |
+
where temp is 1 if include_input is True and 0 otherwise.
|
96 |
+
"""
|
97 |
+
|
98 |
+
if self.num_freqs > 0:
|
99 |
+
embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1)
|
100 |
+
if self.include_input:
|
101 |
+
return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
|
102 |
+
else:
|
103 |
+
return torch.cat((embed.sin(), embed.cos()), dim=-1)
|
104 |
+
else:
|
105 |
+
return x
|
106 |
+
|
107 |
+
|
108 |
+
class LearnedFourierEmbedder(nn.Module):
|
109 |
+
""" following @crowsonkb "s lead with learned sinusoidal pos emb """
|
110 |
+
""" https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """
|
111 |
+
|
112 |
+
def __init__(self, in_channels, dim):
|
113 |
+
super().__init__()
|
114 |
+
assert (dim % 2) == 0
|
115 |
+
half_dim = dim // 2
|
116 |
+
per_channel_dim = half_dim // in_channels
|
117 |
+
self.weights = nn.Parameter(torch.randn(per_channel_dim))
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
"""
|
121 |
+
|
122 |
+
Args:
|
123 |
+
x (torch.FloatTensor): [..., c]
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
x (torch.FloatTensor): [..., d]
|
127 |
+
"""
|
128 |
+
|
129 |
+
# [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d]
|
130 |
+
freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1)
|
131 |
+
fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1)
|
132 |
+
return fouriered
|
133 |
+
|
134 |
+
|
135 |
+
class TriplaneLearnedFourierEmbedder(nn.Module):
|
136 |
+
def __init__(self, in_channels, dim):
|
137 |
+
super().__init__()
|
138 |
+
|
139 |
+
self.yz_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
|
140 |
+
self.xz_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
|
141 |
+
self.xy_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
|
142 |
+
|
143 |
+
self.out_dim = in_channels + dim
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
|
147 |
+
yz_embed = self.yz_plane_embedder(x)
|
148 |
+
xz_embed = self.xz_plane_embedder(x)
|
149 |
+
xy_embed = self.xy_plane_embedder(x)
|
150 |
+
|
151 |
+
embed = yz_embed + xz_embed + xy_embed
|
152 |
+
|
153 |
+
return embed
|
154 |
+
|
155 |
+
|
156 |
+
def sequential_pos_embed(num_len, embed_dim):
|
157 |
+
assert embed_dim % 2 == 0
|
158 |
+
|
159 |
+
pos = torch.arange(num_len, dtype=torch.float32)
|
160 |
+
omega = torch.arange(embed_dim // 2, dtype=torch.float32)
|
161 |
+
omega /= embed_dim / 2.
|
162 |
+
omega = 1. / 10000 ** omega # (D/2,)
|
163 |
+
|
164 |
+
pos = pos.reshape(-1) # (M,)
|
165 |
+
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
166 |
+
|
167 |
+
emb_sin = torch.sin(out) # (M, D/2)
|
168 |
+
emb_cos = torch.cos(out) # (M, D/2)
|
169 |
+
|
170 |
+
embeddings = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
|
171 |
+
|
172 |
+
return embeddings
|
173 |
+
|
174 |
+
|
175 |
+
def timestep_embedding(timesteps, dim, max_period=10000):
|
176 |
+
"""
|
177 |
+
Create sinusoidal timestep embeddings.
|
178 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
179 |
+
These may be fractional.
|
180 |
+
:param dim: the dimension of the output.
|
181 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
182 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
183 |
+
"""
|
184 |
+
half = dim // 2
|
185 |
+
freqs = torch.exp(
|
186 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
187 |
+
).to(device=timesteps.device)
|
188 |
+
args = timesteps[:, None].to(timesteps.dtype) * freqs[None]
|
189 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
190 |
+
if dim % 2:
|
191 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
192 |
+
return embedding
|
193 |
+
|
194 |
+
|
195 |
+
def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, degree=4,
|
196 |
+
num_levels=16, level_dim=2, per_level_scale=2, base_resolution=16,
|
197 |
+
log2_hashmap_size=19, desired_resolution=None):
|
198 |
+
if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1):
|
199 |
+
return nn.Identity(), input_dim
|
200 |
+
|
201 |
+
elif embed_type == "fourier":
|
202 |
+
embedder_obj = FourierEmbedder(num_freqs=num_freqs, input_dim=input_dim,
|
203 |
+
logspace=True, include_input=True)
|
204 |
+
return embedder_obj, embedder_obj.out_dim
|
205 |
+
|
206 |
+
elif embed_type == "hashgrid":
|
207 |
+
raise NotImplementedError
|
208 |
+
|
209 |
+
elif embed_type == "sphere_harmonic":
|
210 |
+
raise NotImplementedError
|
211 |
+
|
212 |
+
else:
|
213 |
+
raise ValueError(f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}")
|
MeshAnything/miche/michelangelo/models/modules/transformer_blocks.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import math
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
from MeshAnything.miche.michelangelo.models.modules.checkpoint import checkpoint
|
10 |
+
|
11 |
+
|
12 |
+
def init_linear(l, stddev):
|
13 |
+
nn.init.normal_(l.weight, std=stddev)
|
14 |
+
if l.bias is not None:
|
15 |
+
nn.init.constant_(l.bias, 0.0)
|
16 |
+
|
17 |
+
|
18 |
+
class MultiheadAttention(nn.Module):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
*,
|
22 |
+
device: torch.device,
|
23 |
+
dtype: torch.dtype,
|
24 |
+
n_ctx: int,
|
25 |
+
width: int,
|
26 |
+
heads: int,
|
27 |
+
init_scale: float,
|
28 |
+
qkv_bias: bool,
|
29 |
+
flash: bool = False
|
30 |
+
):
|
31 |
+
super().__init__()
|
32 |
+
self.n_ctx = n_ctx
|
33 |
+
self.width = width
|
34 |
+
self.heads = heads
|
35 |
+
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias, device=device, dtype=dtype)
|
36 |
+
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
37 |
+
self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx, flash=flash)
|
38 |
+
init_linear(self.c_qkv, init_scale)
|
39 |
+
init_linear(self.c_proj, init_scale)
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
x = self.c_qkv(x)
|
43 |
+
x = checkpoint(self.attention, (x,), (), True)
|
44 |
+
x = self.c_proj(x)
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class QKVMultiheadAttention(nn.Module):
|
49 |
+
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int, flash: bool = False):
|
50 |
+
super().__init__()
|
51 |
+
self.device = device
|
52 |
+
self.dtype = dtype
|
53 |
+
self.heads = heads
|
54 |
+
self.n_ctx = n_ctx
|
55 |
+
self.flash = flash
|
56 |
+
|
57 |
+
def forward(self, qkv):
|
58 |
+
bs, n_ctx, width = qkv.shape
|
59 |
+
attn_ch = width // self.heads // 3
|
60 |
+
scale = 1 / math.sqrt(math.sqrt(attn_ch))
|
61 |
+
qkv = qkv.view(bs, n_ctx, self.heads, -1)
|
62 |
+
q, k, v = torch.split(qkv, attn_ch, dim=-1)
|
63 |
+
|
64 |
+
if self.flash:
|
65 |
+
out = F.scaled_dot_product_attention(q, k, v)
|
66 |
+
else:
|
67 |
+
weight = torch.einsum(
|
68 |
+
"bthc,bshc->bhts", q * scale, k * scale
|
69 |
+
) # More stable with f16 than dividing afterwards
|
70 |
+
wdtype = weight.dtype
|
71 |
+
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
72 |
+
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
73 |
+
|
74 |
+
return out
|
75 |
+
|
76 |
+
|
77 |
+
class ResidualAttentionBlock(nn.Module):
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
*,
|
81 |
+
device: torch.device,
|
82 |
+
dtype: torch.dtype,
|
83 |
+
n_ctx: int,
|
84 |
+
width: int,
|
85 |
+
heads: int,
|
86 |
+
init_scale: float = 1.0,
|
87 |
+
qkv_bias: bool = True,
|
88 |
+
flash: bool = False,
|
89 |
+
use_checkpoint: bool = False
|
90 |
+
):
|
91 |
+
super().__init__()
|
92 |
+
|
93 |
+
self.use_checkpoint = use_checkpoint
|
94 |
+
|
95 |
+
self.attn = MultiheadAttention(
|
96 |
+
device=device,
|
97 |
+
dtype=dtype,
|
98 |
+
n_ctx=n_ctx,
|
99 |
+
width=width,
|
100 |
+
heads=heads,
|
101 |
+
init_scale=init_scale,
|
102 |
+
qkv_bias=qkv_bias,
|
103 |
+
flash=flash
|
104 |
+
)
|
105 |
+
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
106 |
+
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
|
107 |
+
self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)
|
108 |
+
|
109 |
+
def _forward(self, x: torch.Tensor):
|
110 |
+
x = x + self.attn(self.ln_1(x))
|
111 |
+
x = x + self.mlp(self.ln_2(x))
|
112 |
+
return x
|
113 |
+
|
114 |
+
def forward(self, x: torch.Tensor):
|
115 |
+
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
|
116 |
+
|
117 |
+
|
118 |
+
class MultiheadCrossAttention(nn.Module):
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
*,
|
122 |
+
device: torch.device,
|
123 |
+
dtype: torch.dtype,
|
124 |
+
width: int,
|
125 |
+
heads: int,
|
126 |
+
init_scale: float,
|
127 |
+
qkv_bias: bool = True,
|
128 |
+
flash: bool = False,
|
129 |
+
n_data: Optional[int] = None,
|
130 |
+
data_width: Optional[int] = None,
|
131 |
+
):
|
132 |
+
super().__init__()
|
133 |
+
self.n_data = n_data
|
134 |
+
self.width = width
|
135 |
+
self.heads = heads
|
136 |
+
self.data_width = width if data_width is None else data_width
|
137 |
+
self.c_q = nn.Linear(width, width, bias=qkv_bias, device=device, dtype=dtype)
|
138 |
+
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias, device=device, dtype=dtype)
|
139 |
+
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
140 |
+
self.attention = QKVMultiheadCrossAttention(
|
141 |
+
device=device, dtype=dtype, heads=heads, n_data=n_data, flash=flash
|
142 |
+
)
|
143 |
+
init_linear(self.c_q, init_scale)
|
144 |
+
init_linear(self.c_kv, init_scale)
|
145 |
+
init_linear(self.c_proj, init_scale)
|
146 |
+
|
147 |
+
def forward(self, x, data):
|
148 |
+
x = self.c_q(x)
|
149 |
+
data = self.c_kv(data)
|
150 |
+
x = checkpoint(self.attention, (x, data), (), True)
|
151 |
+
x = self.c_proj(x)
|
152 |
+
return x
|
153 |
+
|
154 |
+
|
155 |
+
class QKVMultiheadCrossAttention(nn.Module):
|
156 |
+
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int,
|
157 |
+
flash: bool = False, n_data: Optional[int] = None):
|
158 |
+
|
159 |
+
super().__init__()
|
160 |
+
self.device = device
|
161 |
+
self.dtype = dtype
|
162 |
+
self.heads = heads
|
163 |
+
self.n_data = n_data
|
164 |
+
self.flash = flash
|
165 |
+
|
166 |
+
def forward(self, q, kv):
|
167 |
+
_, n_ctx, _ = q.shape
|
168 |
+
bs, n_data, width = kv.shape
|
169 |
+
attn_ch = width // self.heads // 2
|
170 |
+
scale = 1 / math.sqrt(math.sqrt(attn_ch))
|
171 |
+
q = q.view(bs, n_ctx, self.heads, -1)
|
172 |
+
kv = kv.view(bs, n_data, self.heads, -1)
|
173 |
+
k, v = torch.split(kv, attn_ch, dim=-1)
|
174 |
+
|
175 |
+
if self.flash:
|
176 |
+
out = F.scaled_dot_product_attention(q, k, v)
|
177 |
+
else:
|
178 |
+
weight = torch.einsum(
|
179 |
+
"bthc,bshc->bhts", q * scale, k * scale
|
180 |
+
) # More stable with f16 than dividing afterwards
|
181 |
+
wdtype = weight.dtype
|
182 |
+
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
183 |
+
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
184 |
+
|
185 |
+
return out
|
186 |
+
|
187 |
+
|
188 |
+
class ResidualCrossAttentionBlock(nn.Module):
|
189 |
+
def __init__(
|
190 |
+
self,
|
191 |
+
*,
|
192 |
+
device: Optional[torch.device],
|
193 |
+
dtype: Optional[torch.dtype],
|
194 |
+
n_data: Optional[int] = None,
|
195 |
+
width: int,
|
196 |
+
heads: int,
|
197 |
+
data_width: Optional[int] = None,
|
198 |
+
init_scale: float = 0.25,
|
199 |
+
qkv_bias: bool = True,
|
200 |
+
flash: bool = False
|
201 |
+
):
|
202 |
+
super().__init__()
|
203 |
+
|
204 |
+
if data_width is None:
|
205 |
+
data_width = width
|
206 |
+
|
207 |
+
self.attn = MultiheadCrossAttention(
|
208 |
+
device=device,
|
209 |
+
dtype=dtype,
|
210 |
+
n_data=n_data,
|
211 |
+
width=width,
|
212 |
+
heads=heads,
|
213 |
+
data_width=data_width,
|
214 |
+
init_scale=init_scale,
|
215 |
+
qkv_bias=qkv_bias,
|
216 |
+
flash=flash,
|
217 |
+
)
|
218 |
+
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
219 |
+
self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype)
|
220 |
+
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
|
221 |
+
self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype)
|
222 |
+
|
223 |
+
def forward(self, x: torch.Tensor, data: torch.Tensor):
|
224 |
+
x = x + self.attn(self.ln_1(x), self.ln_2(data))
|
225 |
+
x = x + self.mlp(self.ln_3(x))
|
226 |
+
return x
|
227 |
+
|
228 |
+
|
229 |
+
class MLP(nn.Module):
|
230 |
+
def __init__(self, *,
|
231 |
+
device: Optional[torch.device],
|
232 |
+
dtype: Optional[torch.dtype],
|
233 |
+
width: int,
|
234 |
+
init_scale: float):
|
235 |
+
super().__init__()
|
236 |
+
self.width = width
|
237 |
+
self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
|
238 |
+
self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
|
239 |
+
self.gelu = nn.GELU()
|
240 |
+
init_linear(self.c_fc, init_scale)
|
241 |
+
init_linear(self.c_proj, init_scale)
|
242 |
+
|
243 |
+
def forward(self, x):
|
244 |
+
return self.c_proj(self.gelu(self.c_fc(x)))
|
245 |
+
|
246 |
+
|
247 |
+
class Transformer(nn.Module):
|
248 |
+
def __init__(
|
249 |
+
self,
|
250 |
+
*,
|
251 |
+
device: Optional[torch.device],
|
252 |
+
dtype: Optional[torch.dtype],
|
253 |
+
n_ctx: int,
|
254 |
+
width: int,
|
255 |
+
layers: int,
|
256 |
+
heads: int,
|
257 |
+
init_scale: float = 0.25,
|
258 |
+
qkv_bias: bool = True,
|
259 |
+
flash: bool = False,
|
260 |
+
use_checkpoint: bool = False
|
261 |
+
):
|
262 |
+
super().__init__()
|
263 |
+
self.n_ctx = n_ctx
|
264 |
+
self.width = width
|
265 |
+
self.layers = layers
|
266 |
+
self.resblocks = nn.ModuleList(
|
267 |
+
[
|
268 |
+
ResidualAttentionBlock(
|
269 |
+
device=device,
|
270 |
+
dtype=dtype,
|
271 |
+
n_ctx=n_ctx,
|
272 |
+
width=width,
|
273 |
+
heads=heads,
|
274 |
+
init_scale=init_scale,
|
275 |
+
qkv_bias=qkv_bias,
|
276 |
+
flash=flash,
|
277 |
+
use_checkpoint=use_checkpoint
|
278 |
+
)
|
279 |
+
for _ in range(layers)
|
280 |
+
]
|
281 |
+
)
|
282 |
+
|
283 |
+
def forward(self, x: torch.Tensor):
|
284 |
+
for block in self.resblocks:
|
285 |
+
x = block(x)
|
286 |
+
return x
|
MeshAnything/miche/michelangelo/models/modules/transformer_vit.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import math
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from typing import Optional
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
from MeshAnything.miche.michelangelo.models.modules.checkpoint import checkpoint
|
10 |
+
|
11 |
+
|
12 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
13 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
14 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
15 |
+
def norm_cdf(x):
|
16 |
+
# Computes standard normal cumulative distribution function
|
17 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
18 |
+
|
19 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
20 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
21 |
+
"The distribution of values may be incorrect.",
|
22 |
+
stacklevel=2)
|
23 |
+
|
24 |
+
# Values are generated by using a truncated uniform distribution and
|
25 |
+
# then using the inverse CDF for the normal distribution.
|
26 |
+
# Get upper and lower cdf values
|
27 |
+
l = norm_cdf((a - mean) / std)
|
28 |
+
u = norm_cdf((b - mean) / std)
|
29 |
+
|
30 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
31 |
+
# [2l-1, 2u-1].
|
32 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
33 |
+
|
34 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
35 |
+
# standard normal
|
36 |
+
tensor.erfinv_()
|
37 |
+
|
38 |
+
# Transform to proper mean, std
|
39 |
+
tensor.mul_(std * math.sqrt(2.))
|
40 |
+
tensor.add_(mean)
|
41 |
+
|
42 |
+
# Clamp to ensure it's in the proper range
|
43 |
+
tensor.clamp_(min=a, max=b)
|
44 |
+
return tensor
|
45 |
+
|
46 |
+
|
47 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
48 |
+
# type: (Tensor | nn.Parameter, float, float, float, float) -> Tensor
|
49 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
50 |
+
normal distribution. The values are effectively drawn from the
|
51 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
52 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
53 |
+
the bounds. The method used for generating the random values works
|
54 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
55 |
+
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
|
56 |
+
applied while sampling the normal with mean/std applied, therefore a, b args
|
57 |
+
should be adjusted to match the range of mean, std args.
|
58 |
+
Args:
|
59 |
+
tensor: an n-dimensional `torch.Tensor`
|
60 |
+
mean: the mean of the normal distribution
|
61 |
+
std: the standard deviation of the normal distribution
|
62 |
+
a: the minimum cutoff value
|
63 |
+
b: the maximum cutoff value
|
64 |
+
Examples:
|
65 |
+
>>> w = torch.empty(3, 5)
|
66 |
+
>>> nn.init.trunc_normal_(w)
|
67 |
+
"""
|
68 |
+
with torch.no_grad():
|
69 |
+
return _trunc_normal_(tensor, mean, std, a, b)
|
70 |
+
|
71 |
+
|
72 |
+
def init_weights(m):
|
73 |
+
if isinstance(m, nn.Linear):
|
74 |
+
trunc_normal_(m.weight, std=.02)
|
75 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
76 |
+
nn.init.constant_(m.bias, 0)
|
77 |
+
elif isinstance(m, nn.LayerNorm):
|
78 |
+
nn.init.constant_(m.bias, 0)
|
79 |
+
nn.init.constant_(m.weight, 1.0)
|
80 |
+
|
81 |
+
|
82 |
+
class MultiheadAttention(nn.Module):
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
*,
|
86 |
+
device: torch.device,
|
87 |
+
dtype: torch.dtype,
|
88 |
+
n_ctx: int,
|
89 |
+
width: int,
|
90 |
+
heads: int,
|
91 |
+
qkv_bias: bool
|
92 |
+
):
|
93 |
+
super().__init__()
|
94 |
+
self.n_ctx = n_ctx
|
95 |
+
self.width = width
|
96 |
+
self.heads = heads
|
97 |
+
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias, device=device, dtype=dtype)
|
98 |
+
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
99 |
+
self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
x = self.c_qkv(x)
|
103 |
+
x = checkpoint(self.attention, (x,), (), True)
|
104 |
+
x = self.c_proj(x)
|
105 |
+
return x
|
106 |
+
|
107 |
+
|
108 |
+
class QKVMultiheadAttention(nn.Module):
|
109 |
+
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int):
|
110 |
+
super().__init__()
|
111 |
+
self.device = device
|
112 |
+
self.dtype = dtype
|
113 |
+
self.heads = heads
|
114 |
+
self.n_ctx = n_ctx
|
115 |
+
|
116 |
+
def forward(self, qkv):
|
117 |
+
bs, n_ctx, width = qkv.shape
|
118 |
+
attn_ch = width // self.heads // 3
|
119 |
+
scale = 1 / math.sqrt(attn_ch)
|
120 |
+
qkv = qkv.view(bs, n_ctx, self.heads, -1)
|
121 |
+
q, k, v = torch.split(qkv, attn_ch, dim=-1)
|
122 |
+
weight = torch.einsum("bthc,bshc->bhts", q, k) * scale
|
123 |
+
wdtype = weight.dtype
|
124 |
+
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
125 |
+
return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
126 |
+
|
127 |
+
|
128 |
+
class ResidualAttentionBlock(nn.Module):
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
*,
|
132 |
+
device: torch.device,
|
133 |
+
dtype: torch.dtype,
|
134 |
+
n_ctx: int,
|
135 |
+
width: int,
|
136 |
+
heads: int,
|
137 |
+
qkv_bias: bool = True,
|
138 |
+
use_checkpoint: bool = False
|
139 |
+
):
|
140 |
+
super().__init__()
|
141 |
+
|
142 |
+
self.use_checkpoint = use_checkpoint
|
143 |
+
|
144 |
+
self.attn = MultiheadAttention(
|
145 |
+
device=device,
|
146 |
+
dtype=dtype,
|
147 |
+
n_ctx=n_ctx,
|
148 |
+
width=width,
|
149 |
+
heads=heads,
|
150 |
+
qkv_bias=qkv_bias
|
151 |
+
)
|
152 |
+
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
153 |
+
self.mlp = MLP(device=device, dtype=dtype, width=width)
|
154 |
+
self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)
|
155 |
+
|
156 |
+
def _forward(self, x: torch.Tensor):
|
157 |
+
x = x + self.attn(self.ln_1(x))
|
158 |
+
x = x + self.mlp(self.ln_2(x))
|
159 |
+
return x
|
160 |
+
|
161 |
+
def forward(self, x: torch.Tensor):
|
162 |
+
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
|
163 |
+
|
164 |
+
|
165 |
+
class MultiheadCrossAttention(nn.Module):
|
166 |
+
def __init__(
|
167 |
+
self,
|
168 |
+
*,
|
169 |
+
device: torch.device,
|
170 |
+
dtype: torch.dtype,
|
171 |
+
width: int,
|
172 |
+
heads: int,
|
173 |
+
qkv_bias: bool = True,
|
174 |
+
n_data: Optional[int] = None,
|
175 |
+
data_width: Optional[int] = None,
|
176 |
+
):
|
177 |
+
super().__init__()
|
178 |
+
self.n_data = n_data
|
179 |
+
self.width = width
|
180 |
+
self.heads = heads
|
181 |
+
self.data_width = width if data_width is None else data_width
|
182 |
+
self.c_q = nn.Linear(width, width, bias=qkv_bias, device=device, dtype=dtype)
|
183 |
+
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias, device=device, dtype=dtype)
|
184 |
+
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
185 |
+
self.attention = QKVMultiheadCrossAttention(
|
186 |
+
device=device, dtype=dtype, heads=heads, n_data=n_data
|
187 |
+
)
|
188 |
+
|
189 |
+
def forward(self, x, data):
|
190 |
+
x = self.c_q(x)
|
191 |
+
data = self.c_kv(data)
|
192 |
+
x = checkpoint(self.attention, (x, data), (), True)
|
193 |
+
x = self.c_proj(x)
|
194 |
+
return x
|
195 |
+
|
196 |
+
|
197 |
+
class QKVMultiheadCrossAttention(nn.Module):
|
198 |
+
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_data: Optional[int] = None):
|
199 |
+
super().__init__()
|
200 |
+
self.device = device
|
201 |
+
self.dtype = dtype
|
202 |
+
self.heads = heads
|
203 |
+
self.n_data = n_data
|
204 |
+
|
205 |
+
def forward(self, q, kv):
|
206 |
+
_, n_ctx, _ = q.shape
|
207 |
+
bs, n_data, width = kv.shape
|
208 |
+
attn_ch = width // self.heads // 2
|
209 |
+
scale = 1 / math.sqrt(attn_ch)
|
210 |
+
q = q.view(bs, n_ctx, self.heads, -1)
|
211 |
+
kv = kv.view(bs, n_data, self.heads, -1)
|
212 |
+
k, v = torch.split(kv, attn_ch, dim=-1)
|
213 |
+
weight = torch.einsum("bthc,bshc->bhts", q, k) * scale
|
214 |
+
wdtype = weight.dtype
|
215 |
+
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
216 |
+
return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
217 |
+
|
218 |
+
|
219 |
+
class ResidualCrossAttentionBlock(nn.Module):
|
220 |
+
def __init__(
|
221 |
+
self,
|
222 |
+
*,
|
223 |
+
device: Optional[torch.device],
|
224 |
+
dtype: Optional[torch.dtype],
|
225 |
+
n_data: Optional[int] = None,
|
226 |
+
width: int,
|
227 |
+
heads: int,
|
228 |
+
data_width: Optional[int] = None,
|
229 |
+
qkv_bias: bool = True
|
230 |
+
):
|
231 |
+
super().__init__()
|
232 |
+
|
233 |
+
if data_width is None:
|
234 |
+
data_width = width
|
235 |
+
|
236 |
+
self.attn = MultiheadCrossAttention(
|
237 |
+
device=device,
|
238 |
+
dtype=dtype,
|
239 |
+
n_data=n_data,
|
240 |
+
width=width,
|
241 |
+
heads=heads,
|
242 |
+
data_width=data_width,
|
243 |
+
qkv_bias=qkv_bias
|
244 |
+
)
|
245 |
+
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
246 |
+
self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype)
|
247 |
+
self.mlp = MLP(device=device, dtype=dtype, width=width)
|
248 |
+
self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype)
|
249 |
+
|
250 |
+
def forward(self, x: torch.Tensor, data: torch.Tensor):
|
251 |
+
x = x + self.attn(self.ln_1(x), self.ln_2(data))
|
252 |
+
x = x + self.mlp(self.ln_3(x))
|
253 |
+
return x
|
254 |
+
|
255 |
+
|
256 |
+
class MLP(nn.Module):
|
257 |
+
def __init__(self, *,
|
258 |
+
device: Optional[torch.device],
|
259 |
+
dtype: Optional[torch.dtype],
|
260 |
+
width: int):
|
261 |
+
super().__init__()
|
262 |
+
self.width = width
|
263 |
+
self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
|
264 |
+
self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
|
265 |
+
self.gelu = nn.GELU()
|
266 |
+
|
267 |
+
def forward(self, x):
|
268 |
+
return self.c_proj(self.gelu(self.c_fc(x)))
|
269 |
+
|
270 |
+
|
271 |
+
class Transformer(nn.Module):
|
272 |
+
def __init__(
|
273 |
+
self,
|
274 |
+
*,
|
275 |
+
device: Optional[torch.device],
|
276 |
+
dtype: Optional[torch.dtype],
|
277 |
+
n_ctx: int,
|
278 |
+
width: int,
|
279 |
+
layers: int,
|
280 |
+
heads: int,
|
281 |
+
qkv_bias: bool = True,
|
282 |
+
use_checkpoint: bool = False
|
283 |
+
):
|
284 |
+
super().__init__()
|
285 |
+
self.n_ctx = n_ctx
|
286 |
+
self.width = width
|
287 |
+
self.layers = layers
|
288 |
+
self.resblocks = nn.ModuleList(
|
289 |
+
[
|
290 |
+
ResidualAttentionBlock(
|
291 |
+
device=device,
|
292 |
+
dtype=dtype,
|
293 |
+
n_ctx=n_ctx,
|
294 |
+
width=width,
|
295 |
+
heads=heads,
|
296 |
+
qkv_bias=qkv_bias,
|
297 |
+
use_checkpoint=use_checkpoint
|
298 |
+
)
|
299 |
+
for _ in range(layers)
|
300 |
+
]
|
301 |
+
)
|
302 |
+
|
303 |
+
self.apply(init_weights)
|
304 |
+
|
305 |
+
def forward(self, x: torch.Tensor):
|
306 |
+
for block in self.resblocks:
|
307 |
+
x = block(x)
|
308 |
+
return x
|
MeshAnything/miche/michelangelo/models/tsal/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
MeshAnything/miche/michelangelo/models/tsal/asl_pl_module.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import List, Tuple, Dict, Optional
|
4 |
+
from omegaconf import DictConfig
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import nn
|
9 |
+
from torch.optim import lr_scheduler
|
10 |
+
from typing import Union
|
11 |
+
from functools import partial
|
12 |
+
|
13 |
+
from MeshAnything.miche.michelangelo.utils import instantiate_from_config
|
14 |
+
|
15 |
+
from .tsal_base import (
|
16 |
+
AlignedShapeAsLatentModule,
|
17 |
+
ShapeAsLatentModule,
|
18 |
+
Latent2MeshOutput,
|
19 |
+
AlignedMeshOutput
|
20 |
+
)
|
21 |
+
from MeshAnything.miche.michelangelo.models.tsal.inference_utils import extract_geometry
|
22 |
+
import trimesh
|
23 |
+
|
24 |
+
class AlignedShapeAsLatentPLModule(nn.Module):
|
25 |
+
def __init__(self, *,
|
26 |
+
shape_module_cfg,
|
27 |
+
aligned_module_cfg,
|
28 |
+
loss_cfg,
|
29 |
+
optimizer_cfg: Optional[DictConfig] = None,
|
30 |
+
ckpt_path: Optional[str] = None,
|
31 |
+
ignore_keys: Union[Tuple[str], List[str]] = ()):
|
32 |
+
|
33 |
+
super().__init__()
|
34 |
+
|
35 |
+
shape_model: ShapeAsLatentModule = instantiate_from_config(
|
36 |
+
shape_module_cfg, device=None, dtype=None
|
37 |
+
)
|
38 |
+
self.model: AlignedShapeAsLatentModule = instantiate_from_config(
|
39 |
+
aligned_module_cfg, shape_model=shape_model
|
40 |
+
)
|
41 |
+
|
42 |
+
self.loss = instantiate_from_config(loss_cfg)
|
43 |
+
|
44 |
+
self.optimizer_cfg = optimizer_cfg
|
45 |
+
|
46 |
+
if ckpt_path is not None:
|
47 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
48 |
+
|
49 |
+
def set_shape_model_only(self):
|
50 |
+
self.model.set_shape_model_only()
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
@property
|
55 |
+
def latent_shape(self):
|
56 |
+
return self.model.shape_model.latent_shape
|
57 |
+
|
58 |
+
@property
|
59 |
+
def zero_rank(self):
|
60 |
+
if self._trainer:
|
61 |
+
zero_rank = self.trainer.local_rank == 0
|
62 |
+
else:
|
63 |
+
zero_rank = True
|
64 |
+
|
65 |
+
return zero_rank
|
66 |
+
|
67 |
+
def init_from_ckpt(self, path, ignore_keys=()):
|
68 |
+
state_dict = torch.load(path, map_location="cpu")["state_dict"]
|
69 |
+
|
70 |
+
keys = list(state_dict.keys())
|
71 |
+
for k in keys:
|
72 |
+
for ik in ignore_keys:
|
73 |
+
if k.startswith(ik):
|
74 |
+
print("Deleting key {} from state_dict.".format(k))
|
75 |
+
del state_dict[k]
|
76 |
+
|
77 |
+
missing, unexpected = self.load_state_dict(state_dict, strict=False)
|
78 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
79 |
+
if len(missing) > 0:
|
80 |
+
print(f"Missing Keys: {missing}")
|
81 |
+
print(f"Unexpected Keys: {unexpected}")
|
82 |
+
|
83 |
+
def configure_optimizers(self) -> Tuple[List, List]:
|
84 |
+
lr = self.learning_rate
|
85 |
+
|
86 |
+
trainable_parameters = list(self.model.parameters())
|
87 |
+
|
88 |
+
if self.optimizer_cfg is None:
|
89 |
+
optimizers = [torch.optim.AdamW(trainable_parameters, lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
90 |
+
schedulers = []
|
91 |
+
else:
|
92 |
+
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=trainable_parameters)
|
93 |
+
scheduler_func = instantiate_from_config(
|
94 |
+
self.optimizer_cfg.scheduler,
|
95 |
+
max_decay_steps=self.trainer.max_steps,
|
96 |
+
lr_max=lr
|
97 |
+
)
|
98 |
+
scheduler = {
|
99 |
+
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
|
100 |
+
"interval": "step",
|
101 |
+
"frequency": 1
|
102 |
+
}
|
103 |
+
optimizers = [optimizer]
|
104 |
+
schedulers = [scheduler]
|
105 |
+
|
106 |
+
return optimizers, schedulers
|
107 |
+
|
108 |
+
def forward(self,
|
109 |
+
surface: torch.FloatTensor,
|
110 |
+
image: torch.FloatTensor,
|
111 |
+
text: torch.FloatTensor,
|
112 |
+
volume_queries: torch.FloatTensor):
|
113 |
+
|
114 |
+
"""
|
115 |
+
|
116 |
+
Args:
|
117 |
+
surface (torch.FloatTensor):
|
118 |
+
image (torch.FloatTensor):
|
119 |
+
text (torch.FloatTensor):
|
120 |
+
volume_queries (torch.FloatTensor):
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
|
124 |
+
"""
|
125 |
+
|
126 |
+
embed_outputs, shape_z = self.model(surface, image, text)
|
127 |
+
|
128 |
+
shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_z)
|
129 |
+
latents = self.model.shape_model.decode(shape_zq)
|
130 |
+
logits = self.model.shape_model.query_geometry(volume_queries, latents)
|
131 |
+
|
132 |
+
return embed_outputs, logits, posterior
|
133 |
+
|
134 |
+
def encode(self, surface: torch.FloatTensor, sample_posterior=True):
|
135 |
+
|
136 |
+
pc = surface[..., 0:3]
|
137 |
+
feats = surface[..., 3:6]
|
138 |
+
|
139 |
+
shape_embed, shape_zq, posterior = self.model.shape_model.encode(
|
140 |
+
pc=pc, feats=feats, sample_posterior=sample_posterior
|
141 |
+
)
|
142 |
+
|
143 |
+
return shape_zq
|
144 |
+
|
145 |
+
def encode_latents(self, surface: torch.FloatTensor):
|
146 |
+
|
147 |
+
pc = surface[..., 0:3]
|
148 |
+
feats = surface[..., 3:6]
|
149 |
+
|
150 |
+
shape_embed, shape_latents = self.model.shape_model.encode_latents(
|
151 |
+
pc=pc, feats=feats
|
152 |
+
)
|
153 |
+
shape_embed = shape_embed.unsqueeze(1)
|
154 |
+
assert shape_embed.shape[1] == 1 and shape_latents.shape[1] == 256
|
155 |
+
cat_latents = torch.cat([shape_embed, shape_latents], dim=1)
|
156 |
+
|
157 |
+
return cat_latents
|
158 |
+
|
159 |
+
def recon(self, surface):
|
160 |
+
cat_latents = self.encode_latents(surface)
|
161 |
+
shape_latents = cat_latents[:, 1:]
|
162 |
+
shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_latents)
|
163 |
+
|
164 |
+
# decoding
|
165 |
+
latents = self.model.shape_model.decode(shape_zq)
|
166 |
+
geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
|
167 |
+
|
168 |
+
# reconstruction
|
169 |
+
mesh_v_f, has_surface = extract_geometry(
|
170 |
+
geometric_func=geometric_func,
|
171 |
+
device=surface.device,
|
172 |
+
batch_size=surface.shape[0],
|
173 |
+
bounds=(-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
|
174 |
+
octree_depth=7,
|
175 |
+
num_chunks=10000,
|
176 |
+
)
|
177 |
+
recon_mesh = trimesh.Trimesh(mesh_v_f[0][0], mesh_v_f[0][1])
|
178 |
+
|
179 |
+
return recon_mesh
|
180 |
+
|
181 |
+
|
182 |
+
def to_shape_latents(self, latents):
|
183 |
+
|
184 |
+
shape_zq, posterior = self.model.shape_model.encode_kl_embed(latents, sample_posterior = False)
|
185 |
+
return self.model.shape_model.decode(shape_zq)
|
186 |
+
|
187 |
+
def decode(self,
|
188 |
+
z_q,
|
189 |
+
bounds: Union[Tuple[float], List[float], float] = 1.1,
|
190 |
+
octree_depth: int = 7,
|
191 |
+
num_chunks: int = 10000) -> List[Latent2MeshOutput]:
|
192 |
+
|
193 |
+
latents = self.model.shape_model.decode(z_q) # latents: [bs, num_latents, dim]
|
194 |
+
outputs = self.latent2mesh(latents, bounds=bounds, octree_depth=octree_depth, num_chunks=num_chunks)
|
195 |
+
|
196 |
+
return outputs
|
197 |
+
|
198 |
+
def training_step(self, batch: Dict[str, torch.FloatTensor],
|
199 |
+
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
200 |
+
"""
|
201 |
+
|
202 |
+
Args:
|
203 |
+
batch (dict): the batch sample, and it contains:
|
204 |
+
- surface (torch.FloatTensor): [bs, n_surface, (3 + input_dim)]
|
205 |
+
- image (torch.FloatTensor): [bs, 3, 224, 224]
|
206 |
+
- text (torch.FloatTensor): [bs, num_templates, 77]
|
207 |
+
- geo_points (torch.FloatTensor): [bs, n_pts, (3 + 1)]
|
208 |
+
|
209 |
+
batch_idx (int):
|
210 |
+
|
211 |
+
optimizer_idx (int):
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
loss (torch.FloatTensor):
|
215 |
+
|
216 |
+
"""
|
217 |
+
|
218 |
+
surface = batch["surface"]
|
219 |
+
image = batch["image"]
|
220 |
+
text = batch["text"]
|
221 |
+
|
222 |
+
volume_queries = batch["geo_points"][..., 0:3]
|
223 |
+
shape_labels = batch["geo_points"][..., -1]
|
224 |
+
|
225 |
+
embed_outputs, shape_logits, posteriors = self(surface, image, text, volume_queries)
|
226 |
+
|
227 |
+
aeloss, log_dict_ae = self.loss(
|
228 |
+
**embed_outputs,
|
229 |
+
posteriors=posteriors,
|
230 |
+
shape_logits=shape_logits,
|
231 |
+
shape_labels=shape_labels,
|
232 |
+
split="train"
|
233 |
+
)
|
234 |
+
|
235 |
+
self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=shape_logits.shape[0],
|
236 |
+
sync_dist=False, rank_zero_only=True)
|
237 |
+
|
238 |
+
return aeloss
|
239 |
+
|
240 |
+
def validation_step(self, batch: Dict[str, torch.FloatTensor], batch_idx: int) -> torch.FloatTensor:
|
241 |
+
|
242 |
+
surface = batch["surface"]
|
243 |
+
image = batch["image"]
|
244 |
+
text = batch["text"]
|
245 |
+
|
246 |
+
volume_queries = batch["geo_points"][..., 0:3]
|
247 |
+
shape_labels = batch["geo_points"][..., -1]
|
248 |
+
|
249 |
+
embed_outputs, shape_logits, posteriors = self(surface, image, text, volume_queries)
|
250 |
+
|
251 |
+
aeloss, log_dict_ae = self.loss(
|
252 |
+
**embed_outputs,
|
253 |
+
posteriors=posteriors,
|
254 |
+
shape_logits=shape_logits,
|
255 |
+
shape_labels=shape_labels,
|
256 |
+
split="val"
|
257 |
+
)
|
258 |
+
self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=shape_logits.shape[0],
|
259 |
+
sync_dist=False, rank_zero_only=True)
|
260 |
+
|
261 |
+
return aeloss
|
262 |
+
|
263 |
+
def visual_alignment(self,
|
264 |
+
surface: torch.FloatTensor,
|
265 |
+
image: torch.FloatTensor,
|
266 |
+
text: torch.FloatTensor,
|
267 |
+
description: Optional[List[str]] = None,
|
268 |
+
bounds: Union[Tuple[float], List[float]] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
|
269 |
+
octree_depth: int = 7,
|
270 |
+
num_chunks: int = 10000) -> List[AlignedMeshOutput]:
|
271 |
+
|
272 |
+
"""
|
273 |
+
|
274 |
+
Args:
|
275 |
+
surface:
|
276 |
+
image:
|
277 |
+
text:
|
278 |
+
description:
|
279 |
+
bounds:
|
280 |
+
octree_depth:
|
281 |
+
num_chunks:
|
282 |
+
|
283 |
+
Returns:
|
284 |
+
mesh_outputs (List[AlignedMeshOutput]): the mesh outputs list.
|
285 |
+
|
286 |
+
"""
|
287 |
+
|
288 |
+
outputs = []
|
289 |
+
|
290 |
+
device = surface.device
|
291 |
+
bs = surface.shape[0]
|
292 |
+
|
293 |
+
embed_outputs, shape_z = self.model(surface, image, text)
|
294 |
+
|
295 |
+
# calculate the similarity
|
296 |
+
image_embed = embed_outputs["image_embed"]
|
297 |
+
text_embed = embed_outputs["text_embed"]
|
298 |
+
shape_embed = embed_outputs["shape_embed"]
|
299 |
+
|
300 |
+
# normalized features
|
301 |
+
shape_embed = F.normalize(shape_embed, dim=-1, p=2)
|
302 |
+
text_embed = F.normalize(text_embed, dim=-1, p=2)
|
303 |
+
image_embed = F.normalize(image_embed, dim=-1, p=2)
|
304 |
+
|
305 |
+
# B x B
|
306 |
+
shape_text_similarity = (100.0 * shape_embed @ text_embed.T).softmax(dim=-1)
|
307 |
+
|
308 |
+
# B x B
|
309 |
+
shape_image_similarity = (100.0 * shape_embed @ image_embed.T).softmax(dim=-1)
|
310 |
+
|
311 |
+
# shape reconstruction
|
312 |
+
shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_z)
|
313 |
+
latents = self.model.shape_model.decode(shape_zq)
|
314 |
+
geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
|
315 |
+
|
316 |
+
# 2. decode geometry
|
317 |
+
mesh_v_f, has_surface = extract_geometry(
|
318 |
+
geometric_func=geometric_func,
|
319 |
+
device=device,
|
320 |
+
batch_size=bs,
|
321 |
+
bounds=bounds,
|
322 |
+
octree_depth=octree_depth,
|
323 |
+
num_chunks=num_chunks,
|
324 |
+
disable=not self.zero_rank
|
325 |
+
)
|
326 |
+
|
327 |
+
# 3. decode texture
|
328 |
+
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
|
329 |
+
if not is_surface:
|
330 |
+
outputs.append(None)
|
331 |
+
continue
|
332 |
+
|
333 |
+
out = AlignedMeshOutput()
|
334 |
+
out.mesh_v = mesh_v
|
335 |
+
out.mesh_f = mesh_f
|
336 |
+
out.surface = surface[i].cpu().numpy()
|
337 |
+
out.image = image[i].cpu().numpy()
|
338 |
+
if description is not None:
|
339 |
+
out.text = description[i]
|
340 |
+
out.shape_text_similarity = shape_text_similarity[i, i]
|
341 |
+
out.shape_image_similarity = shape_image_similarity[i, i]
|
342 |
+
|
343 |
+
outputs.append(out)
|
344 |
+
|
345 |
+
return outputs
|
346 |
+
|
347 |
+
def latent2mesh(self,
|
348 |
+
latents: torch.FloatTensor,
|
349 |
+
bounds: Union[Tuple[float], List[float], float] = 1.1,
|
350 |
+
octree_depth: int = 7,
|
351 |
+
num_chunks: int = 10000) -> List[Latent2MeshOutput]:
|
352 |
+
|
353 |
+
"""
|
354 |
+
|
355 |
+
Args:
|
356 |
+
latents: [bs, num_latents, dim]
|
357 |
+
bounds:
|
358 |
+
octree_depth:
|
359 |
+
num_chunks:
|
360 |
+
|
361 |
+
Returns:
|
362 |
+
mesh_outputs (List[MeshOutput]): the mesh outputs list.
|
363 |
+
|
364 |
+
"""
|
365 |
+
|
366 |
+
outputs = []
|
367 |
+
|
368 |
+
geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
|
369 |
+
|
370 |
+
# 2. decode geometry
|
371 |
+
device = latents.device
|
372 |
+
mesh_v_f, has_surface = extract_geometry(
|
373 |
+
geometric_func=geometric_func,
|
374 |
+
device=device,
|
375 |
+
batch_size=len(latents),
|
376 |
+
bounds=bounds,
|
377 |
+
octree_depth=octree_depth,
|
378 |
+
num_chunks=num_chunks,
|
379 |
+
disable=not self.zero_rank
|
380 |
+
)
|
381 |
+
|
382 |
+
# 3. decode texture
|
383 |
+
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
|
384 |
+
if not is_surface:
|
385 |
+
outputs.append(None)
|
386 |
+
continue
|
387 |
+
|
388 |
+
out = Latent2MeshOutput()
|
389 |
+
out.mesh_v = mesh_v
|
390 |
+
out.mesh_f = mesh_f
|
391 |
+
|
392 |
+
outputs.append(out)
|
393 |
+
|
394 |
+
return outputs
|
395 |
+
|
MeshAnything/miche/michelangelo/models/tsal/clip_asl_module.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from einops import rearrange
|
6 |
+
from transformers import CLIPModel
|
7 |
+
|
8 |
+
from MeshAnything.miche.michelangelo.models.tsal.tsal_base import AlignedShapeAsLatentModule
|
9 |
+
|
10 |
+
|
11 |
+
class CLIPAlignedShapeAsLatentModule(AlignedShapeAsLatentModule):
|
12 |
+
|
13 |
+
def __init__(self, *,
|
14 |
+
shape_model,
|
15 |
+
clip_model_version: str = "openai/clip-vit-large-patch14"):
|
16 |
+
|
17 |
+
super().__init__()
|
18 |
+
|
19 |
+
# self.clip_model: CLIPModel = CLIPModel.from_pretrained(clip_model_version)
|
20 |
+
# for params in self.clip_model.parameters():
|
21 |
+
# params.requires_grad = False
|
22 |
+
self.clip_model = None
|
23 |
+
self.shape_model = shape_model
|
24 |
+
self.shape_projection = nn.Parameter(torch.empty(self.shape_model.width, self.shape_model.width))
|
25 |
+
# nn.init.normal_(self.shape_projection, std=self.shape_model.width ** -0.5)
|
26 |
+
|
27 |
+
def set_shape_model_only(self):
|
28 |
+
self.clip_model = None
|
29 |
+
|
30 |
+
def encode_shape_embed(self, surface, return_latents: bool = False):
|
31 |
+
"""
|
32 |
+
|
33 |
+
Args:
|
34 |
+
surface (torch.FloatTensor): [bs, n, 3 + c]
|
35 |
+
return_latents (bool):
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
x (torch.FloatTensor): [bs, projection_dim]
|
39 |
+
shape_latents (torch.FloatTensor): [bs, m, d]
|
40 |
+
"""
|
41 |
+
|
42 |
+
pc = surface[..., 0:3]
|
43 |
+
feats = surface[..., 3:]
|
44 |
+
|
45 |
+
shape_embed, shape_latents = self.shape_model.encode_latents(pc, feats)
|
46 |
+
x = shape_embed @ self.shape_projection
|
47 |
+
|
48 |
+
if return_latents:
|
49 |
+
return x, shape_latents
|
50 |
+
else:
|
51 |
+
return x
|
52 |
+
|
53 |
+
def encode_image_embed(self, image):
|
54 |
+
"""
|
55 |
+
|
56 |
+
Args:
|
57 |
+
image (torch.FloatTensor): [bs, 3, h, w]
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
x (torch.FloatTensor): [bs, projection_dim]
|
61 |
+
"""
|
62 |
+
|
63 |
+
x = self.clip_model.get_image_features(image)
|
64 |
+
|
65 |
+
return x
|
66 |
+
|
67 |
+
def encode_text_embed(self, text):
|
68 |
+
x = self.clip_model.get_text_features(text)
|
69 |
+
return x
|
70 |
+
|
71 |
+
def forward(self, surface, image, text):
|
72 |
+
"""
|
73 |
+
|
74 |
+
Args:
|
75 |
+
surface (torch.FloatTensor):
|
76 |
+
image (torch.FloatTensor): [bs, 3, 224, 224]
|
77 |
+
text (torch.LongTensor): [bs, num_templates, 77]
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
embed_outputs (dict): the embedding outputs, and it contains:
|
81 |
+
- image_embed (torch.FloatTensor):
|
82 |
+
- text_embed (torch.FloatTensor):
|
83 |
+
- shape_embed (torch.FloatTensor):
|
84 |
+
- logit_scale (float):
|
85 |
+
"""
|
86 |
+
|
87 |
+
# # text embedding
|
88 |
+
# text_embed_all = []
|
89 |
+
# for i in range(text.shape[0]):
|
90 |
+
# text_for_one_sample = text[i]
|
91 |
+
# text_embed = self.encode_text_embed(text_for_one_sample)
|
92 |
+
# text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
|
93 |
+
# text_embed = text_embed.mean(dim=0)
|
94 |
+
# text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
|
95 |
+
# text_embed_all.append(text_embed)
|
96 |
+
# text_embed_all = torch.stack(text_embed_all)
|
97 |
+
|
98 |
+
b = text.shape[0]
|
99 |
+
text_tokens = rearrange(text, "b t l -> (b t) l")
|
100 |
+
text_embed = self.encode_text_embed(text_tokens)
|
101 |
+
text_embed = rearrange(text_embed, "(b t) d -> b t d", b=b)
|
102 |
+
text_embed = text_embed.mean(dim=1)
|
103 |
+
text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
|
104 |
+
|
105 |
+
# image embedding
|
106 |
+
image_embed = self.encode_image_embed(image)
|
107 |
+
|
108 |
+
# shape embedding
|
109 |
+
shape_embed, shape_latents = self.encode_shape_embed(surface, return_latents=True)
|
110 |
+
|
111 |
+
embed_outputs = {
|
112 |
+
"image_embed": image_embed,
|
113 |
+
"text_embed": text_embed,
|
114 |
+
"shape_embed": shape_embed,
|
115 |
+
# "logit_scale": self.clip_model.logit_scale.exp()
|
116 |
+
}
|
117 |
+
|
118 |
+
return embed_outputs, shape_latents
|
MeshAnything/miche/michelangelo/models/tsal/inference_utils.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from tqdm import tqdm
|
5 |
+
from einops import repeat
|
6 |
+
import numpy as np
|
7 |
+
from typing import Callable, Tuple, List, Union, Optional
|
8 |
+
from skimage import measure
|
9 |
+
|
10 |
+
from MeshAnything.miche.michelangelo.graphics.primitives import generate_dense_grid_points
|
11 |
+
|
12 |
+
|
13 |
+
@torch.no_grad()
|
14 |
+
def extract_geometry(geometric_func: Callable,
|
15 |
+
device: torch.device,
|
16 |
+
batch_size: int = 1,
|
17 |
+
bounds: Union[Tuple[float], List[float], float] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
|
18 |
+
octree_depth: int = 7,
|
19 |
+
num_chunks: int = 10000,
|
20 |
+
disable: bool = True):
|
21 |
+
"""
|
22 |
+
|
23 |
+
Args:
|
24 |
+
geometric_func:
|
25 |
+
device:
|
26 |
+
bounds:
|
27 |
+
octree_depth:
|
28 |
+
batch_size:
|
29 |
+
num_chunks:
|
30 |
+
disable:
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
|
34 |
+
"""
|
35 |
+
|
36 |
+
if isinstance(bounds, float):
|
37 |
+
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
|
38 |
+
|
39 |
+
bbox_min = np.array(bounds[0:3])
|
40 |
+
bbox_max = np.array(bounds[3:6])
|
41 |
+
bbox_size = bbox_max - bbox_min
|
42 |
+
|
43 |
+
xyz_samples, grid_size, length = generate_dense_grid_points(
|
44 |
+
bbox_min=bbox_min,
|
45 |
+
bbox_max=bbox_max,
|
46 |
+
octree_depth=octree_depth,
|
47 |
+
indexing="ij"
|
48 |
+
)
|
49 |
+
xyz_samples = torch.FloatTensor(xyz_samples)
|
50 |
+
|
51 |
+
batch_logits = []
|
52 |
+
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks),
|
53 |
+
desc="Implicit Function:", disable=disable, leave=False):
|
54 |
+
queries = xyz_samples[start: start + num_chunks, :].to(device)
|
55 |
+
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
|
56 |
+
|
57 |
+
logits = geometric_func(batch_queries)
|
58 |
+
batch_logits.append(logits.cpu())
|
59 |
+
|
60 |
+
grid_logits = torch.cat(batch_logits, dim=1).view((batch_size, grid_size[0], grid_size[1], grid_size[2])).numpy()
|
61 |
+
|
62 |
+
mesh_v_f = []
|
63 |
+
has_surface = np.zeros((batch_size,), dtype=np.bool_)
|
64 |
+
for i in range(batch_size):
|
65 |
+
try:
|
66 |
+
vertices, faces, normals, _ = measure.marching_cubes(grid_logits[i], 0, method="lewiner")
|
67 |
+
vertices = vertices / grid_size * bbox_size + bbox_min
|
68 |
+
# vertices[:, [0, 1]] = vertices[:, [1, 0]]
|
69 |
+
mesh_v_f.append((vertices.astype(np.float32), np.ascontiguousarray(faces)))
|
70 |
+
has_surface[i] = True
|
71 |
+
|
72 |
+
except ValueError:
|
73 |
+
mesh_v_f.append((None, None))
|
74 |
+
has_surface[i] = False
|
75 |
+
|
76 |
+
except RuntimeError:
|
77 |
+
mesh_v_f.append((None, None))
|
78 |
+
has_surface[i] = False
|
79 |
+
|
80 |
+
return mesh_v_f, has_surface
|
MeshAnything/miche/michelangelo/models/tsal/loss.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
from typing import Optional, Tuple, Dict
|
7 |
+
|
8 |
+
from MeshAnything.miche.michelangelo.models.modules.distributions import DiagonalGaussianDistribution
|
9 |
+
from MeshAnything.miche.michelangelo.utils.eval import compute_psnr
|
10 |
+
from MeshAnything.miche.michelangelo.utils import misc
|
11 |
+
|
12 |
+
|
13 |
+
class KLNearFar(nn.Module):
|
14 |
+
def __init__(self,
|
15 |
+
near_weight: float = 0.1,
|
16 |
+
kl_weight: float = 1.0,
|
17 |
+
num_near_samples: Optional[int] = None):
|
18 |
+
|
19 |
+
super().__init__()
|
20 |
+
|
21 |
+
self.near_weight = near_weight
|
22 |
+
self.kl_weight = kl_weight
|
23 |
+
self.num_near_samples = num_near_samples
|
24 |
+
self.geo_criterion = nn.BCEWithLogitsLoss()
|
25 |
+
|
26 |
+
def forward(self,
|
27 |
+
posteriors: Optional[DiagonalGaussianDistribution],
|
28 |
+
logits: torch.FloatTensor,
|
29 |
+
labels: torch.FloatTensor,
|
30 |
+
split: Optional[str] = "train", **kwargs) -> Tuple[torch.FloatTensor, Dict[str, float]]:
|
31 |
+
|
32 |
+
"""
|
33 |
+
|
34 |
+
Args:
|
35 |
+
posteriors (DiagonalGaussianDistribution or torch.distributions.Normal):
|
36 |
+
logits (torch.FloatTensor): [B, 2*N], logits[:, 0:N] is the volume points; logits[:, N:2N] is the near points;
|
37 |
+
labels (torch.FloatTensor): [B, 2*N], labels[:, 0:N] is the volume points; labels[:, N:2N] is the near points;
|
38 |
+
split (str):
|
39 |
+
**kwargs:
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
loss (torch.Tensor): (,)
|
43 |
+
log (dict):
|
44 |
+
|
45 |
+
"""
|
46 |
+
|
47 |
+
if self.num_near_samples is None:
|
48 |
+
num_vol = logits.shape[1] // 2
|
49 |
+
else:
|
50 |
+
num_vol = logits.shape[1] - self.num_near_samples
|
51 |
+
|
52 |
+
vol_logits = logits[:, 0:num_vol]
|
53 |
+
vol_labels = labels[:, 0:num_vol]
|
54 |
+
|
55 |
+
near_logits = logits[:, num_vol:]
|
56 |
+
near_labels = labels[:, num_vol:]
|
57 |
+
|
58 |
+
# occupancy loss
|
59 |
+
# vol_bce = self.geo_criterion(vol_logits, vol_labels)
|
60 |
+
# near_bce = self.geo_criterion(near_logits, near_labels)
|
61 |
+
vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
|
62 |
+
near_bce = self.geo_criterion(near_logits.float(), near_labels.float())
|
63 |
+
|
64 |
+
if posteriors is None:
|
65 |
+
kl_loss = torch.tensor(0.0, dtype=vol_logits.dtype, device=vol_logits.device)
|
66 |
+
else:
|
67 |
+
kl_loss = posteriors.kl(dims=(1, 2))
|
68 |
+
kl_loss = torch.mean(kl_loss)
|
69 |
+
|
70 |
+
loss = vol_bce + near_bce * self.near_weight + kl_loss * self.kl_weight
|
71 |
+
|
72 |
+
with torch.no_grad():
|
73 |
+
preds = logits >= 0
|
74 |
+
accuracy = (preds == labels).float()
|
75 |
+
accuracy = accuracy.mean()
|
76 |
+
pos_ratio = torch.mean(labels)
|
77 |
+
|
78 |
+
log = {
|
79 |
+
"{}/total_loss".format(split): loss.clone().detach(),
|
80 |
+
"{}/near".format(split): near_bce.detach(),
|
81 |
+
"{}/far".format(split): vol_bce.detach(),
|
82 |
+
"{}/kl".format(split): kl_loss.detach(),
|
83 |
+
"{}/accuracy".format(split): accuracy,
|
84 |
+
"{}/pos_ratio".format(split): pos_ratio
|
85 |
+
}
|
86 |
+
|
87 |
+
if posteriors is not None:
|
88 |
+
log[f"{split}/mean"] = posteriors.mean.mean().detach()
|
89 |
+
log[f"{split}/std_mean"] = posteriors.std.mean().detach()
|
90 |
+
log[f"{split}/std_max"] = posteriors.std.max().detach()
|
91 |
+
|
92 |
+
return loss, log
|
93 |
+
|
94 |
+
|
95 |
+
class KLNearFarColor(nn.Module):
|
96 |
+
def __init__(self,
|
97 |
+
near_weight: float = 0.1,
|
98 |
+
kl_weight: float = 1.0,
|
99 |
+
color_weight: float = 1.0,
|
100 |
+
color_criterion: str = "mse",
|
101 |
+
num_near_samples: Optional[int] = None):
|
102 |
+
|
103 |
+
super().__init__()
|
104 |
+
|
105 |
+
self.color_weight = color_weight
|
106 |
+
self.near_weight = near_weight
|
107 |
+
self.kl_weight = kl_weight
|
108 |
+
self.num_near_samples = num_near_samples
|
109 |
+
|
110 |
+
if color_criterion == "mse":
|
111 |
+
self.color_criterion = nn.MSELoss()
|
112 |
+
|
113 |
+
elif color_criterion == "l1":
|
114 |
+
self.color_criterion = nn.L1Loss()
|
115 |
+
|
116 |
+
else:
|
117 |
+
raise ValueError(f"{color_criterion} must be [`mse`, `l1`].")
|
118 |
+
|
119 |
+
self.geo_criterion = nn.BCEWithLogitsLoss()
|
120 |
+
|
121 |
+
def forward(self,
|
122 |
+
posteriors: Optional[DiagonalGaussianDistribution],
|
123 |
+
logits: torch.FloatTensor,
|
124 |
+
labels: torch.FloatTensor,
|
125 |
+
pred_colors: torch.FloatTensor,
|
126 |
+
gt_colors: torch.FloatTensor,
|
127 |
+
split: Optional[str] = "train", **kwargs) -> Tuple[torch.FloatTensor, Dict[str, float]]:
|
128 |
+
|
129 |
+
"""
|
130 |
+
|
131 |
+
Args:
|
132 |
+
posteriors (DiagonalGaussianDistribution or torch.distributions.Normal):
|
133 |
+
logits (torch.FloatTensor): [B, 2*N], logits[:, 0:N] is the volume points; logits[:, N:2N] is the near points;
|
134 |
+
labels (torch.FloatTensor): [B, 2*N], labels[:, 0:N] is the volume points; labels[:, N:2N] is the near points;
|
135 |
+
pred_colors (torch.FloatTensor): [B, M, 3]
|
136 |
+
gt_colors (torch.FloatTensor): [B, M, 3]
|
137 |
+
split (str):
|
138 |
+
**kwargs:
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
loss (torch.Tensor): (,)
|
142 |
+
log (dict):
|
143 |
+
|
144 |
+
"""
|
145 |
+
|
146 |
+
if self.num_near_samples is None:
|
147 |
+
num_vol = logits.shape[1] // 2
|
148 |
+
else:
|
149 |
+
num_vol = logits.shape[1] - self.num_near_samples
|
150 |
+
|
151 |
+
vol_logits = logits[:, 0:num_vol]
|
152 |
+
vol_labels = labels[:, 0:num_vol]
|
153 |
+
|
154 |
+
near_logits = logits[:, num_vol:]
|
155 |
+
near_labels = labels[:, num_vol:]
|
156 |
+
|
157 |
+
# occupancy loss
|
158 |
+
# vol_bce = self.geo_criterion(vol_logits, vol_labels)
|
159 |
+
# near_bce = self.geo_criterion(near_logits, near_labels)
|
160 |
+
vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
|
161 |
+
near_bce = self.geo_criterion(near_logits.float(), near_labels.float())
|
162 |
+
|
163 |
+
# surface color loss
|
164 |
+
color = self.color_criterion(pred_colors, gt_colors)
|
165 |
+
|
166 |
+
if posteriors is None:
|
167 |
+
kl_loss = torch.tensor(0.0, dtype=pred_colors.dtype, device=pred_colors.device)
|
168 |
+
else:
|
169 |
+
kl_loss = posteriors.kl(dims=(1, 2))
|
170 |
+
kl_loss = torch.mean(kl_loss)
|
171 |
+
|
172 |
+
loss = vol_bce + near_bce * self.near_weight + color * self.color_weight + kl_loss * self.kl_weight
|
173 |
+
|
174 |
+
with torch.no_grad():
|
175 |
+
preds = logits >= 0
|
176 |
+
accuracy = (preds == labels).float()
|
177 |
+
accuracy = accuracy.mean()
|
178 |
+
psnr = compute_psnr(pred_colors, gt_colors)
|
179 |
+
|
180 |
+
log = {
|
181 |
+
"{}/total_loss".format(split): loss.clone().detach(),
|
182 |
+
"{}/near".format(split): near_bce.detach(),
|
183 |
+
"{}/far".format(split): vol_bce.detach(),
|
184 |
+
"{}/color".format(split): color.detach(),
|
185 |
+
"{}/kl".format(split): kl_loss.detach(),
|
186 |
+
"{}/psnr".format(split): psnr.detach(),
|
187 |
+
"{}/accuracy".format(split): accuracy
|
188 |
+
}
|
189 |
+
|
190 |
+
return loss, log
|
191 |
+
|
192 |
+
|
193 |
+
class ContrastKLNearFar(nn.Module):
|
194 |
+
def __init__(self,
|
195 |
+
contrast_weight: float = 1.0,
|
196 |
+
near_weight: float = 0.1,
|
197 |
+
kl_weight: float = 1.0,
|
198 |
+
num_near_samples: Optional[int] = None):
|
199 |
+
|
200 |
+
super().__init__()
|
201 |
+
|
202 |
+
self.labels = None
|
203 |
+
self.last_local_batch_size = None
|
204 |
+
|
205 |
+
self.contrast_weight = contrast_weight
|
206 |
+
self.near_weight = near_weight
|
207 |
+
self.kl_weight = kl_weight
|
208 |
+
self.num_near_samples = num_near_samples
|
209 |
+
self.geo_criterion = nn.BCEWithLogitsLoss()
|
210 |
+
|
211 |
+
def forward(self,
|
212 |
+
shape_embed: torch.FloatTensor,
|
213 |
+
text_embed: torch.FloatTensor,
|
214 |
+
image_embed: torch.FloatTensor,
|
215 |
+
logit_scale: torch.FloatTensor,
|
216 |
+
posteriors: Optional[DiagonalGaussianDistribution],
|
217 |
+
shape_logits: torch.FloatTensor,
|
218 |
+
shape_labels: torch.FloatTensor,
|
219 |
+
split: Optional[str] = "train", **kwargs):
|
220 |
+
|
221 |
+
local_batch_size = shape_embed.size(0)
|
222 |
+
|
223 |
+
if local_batch_size != self.last_local_batch_size:
|
224 |
+
self.labels = local_batch_size * misc.get_rank() + torch.arange(
|
225 |
+
local_batch_size, device=shape_embed.device
|
226 |
+
).long()
|
227 |
+
self.last_local_batch_size = local_batch_size
|
228 |
+
|
229 |
+
# normalized features
|
230 |
+
shape_embed = F.normalize(shape_embed, dim=-1, p=2)
|
231 |
+
text_embed = F.normalize(text_embed, dim=-1, p=2)
|
232 |
+
image_embed = F.normalize(image_embed, dim=-1, p=2)
|
233 |
+
|
234 |
+
# gather features from all GPUs
|
235 |
+
shape_embed_all, text_embed_all, image_embed_all = misc.all_gather_batch(
|
236 |
+
[shape_embed, text_embed, image_embed]
|
237 |
+
)
|
238 |
+
|
239 |
+
# cosine similarity as logits
|
240 |
+
logits_per_shape_text = logit_scale * shape_embed @ text_embed_all.t()
|
241 |
+
logits_per_text_shape = logit_scale * text_embed @ shape_embed_all.t()
|
242 |
+
logits_per_shape_image = logit_scale * shape_embed @ image_embed_all.t()
|
243 |
+
logits_per_image_shape = logit_scale * image_embed @ shape_embed_all.t()
|
244 |
+
contrast_loss = (F.cross_entropy(logits_per_shape_text, self.labels) +
|
245 |
+
F.cross_entropy(logits_per_text_shape, self.labels)) / 2 + \
|
246 |
+
(F.cross_entropy(logits_per_shape_image, self.labels) +
|
247 |
+
F.cross_entropy(logits_per_image_shape, self.labels)) / 2
|
248 |
+
|
249 |
+
# shape reconstruction
|
250 |
+
if self.num_near_samples is None:
|
251 |
+
num_vol = shape_logits.shape[1] // 2
|
252 |
+
else:
|
253 |
+
num_vol = shape_logits.shape[1] - self.num_near_samples
|
254 |
+
|
255 |
+
vol_logits = shape_logits[:, 0:num_vol]
|
256 |
+
vol_labels = shape_labels[:, 0:num_vol]
|
257 |
+
|
258 |
+
near_logits = shape_logits[:, num_vol:]
|
259 |
+
near_labels = shape_labels[:, num_vol:]
|
260 |
+
|
261 |
+
# occupancy loss
|
262 |
+
vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
|
263 |
+
near_bce = self.geo_criterion(near_logits.float(), near_labels.float())
|
264 |
+
|
265 |
+
if posteriors is None:
|
266 |
+
kl_loss = torch.tensor(0.0, dtype=vol_logits.dtype, device=vol_logits.device)
|
267 |
+
else:
|
268 |
+
kl_loss = posteriors.kl(dims=(1, 2))
|
269 |
+
kl_loss = torch.mean(kl_loss)
|
270 |
+
|
271 |
+
loss = vol_bce + near_bce * self.near_weight + kl_loss * self.kl_weight + contrast_loss * self.contrast_weight
|
272 |
+
|
273 |
+
# compute accuracy
|
274 |
+
with torch.no_grad():
|
275 |
+
pred = torch.argmax(logits_per_shape_text, dim=-1)
|
276 |
+
correct = pred.eq(self.labels).sum()
|
277 |
+
shape_text_acc = 100 * correct / local_batch_size
|
278 |
+
|
279 |
+
pred = torch.argmax(logits_per_shape_image, dim=-1)
|
280 |
+
correct = pred.eq(self.labels).sum()
|
281 |
+
shape_image_acc = 100 * correct / local_batch_size
|
282 |
+
|
283 |
+
preds = shape_logits >= 0
|
284 |
+
accuracy = (preds == shape_labels).float()
|
285 |
+
accuracy = accuracy.mean()
|
286 |
+
|
287 |
+
log = {
|
288 |
+
"{}/contrast".format(split): contrast_loss.clone().detach(),
|
289 |
+
"{}/near".format(split): near_bce.detach(),
|
290 |
+
"{}/far".format(split): vol_bce.detach(),
|
291 |
+
"{}/kl".format(split): kl_loss.detach(),
|
292 |
+
"{}/shape_text_acc".format(split): shape_text_acc,
|
293 |
+
"{}/shape_image_acc".format(split): shape_image_acc,
|
294 |
+
"{}/total_loss".format(split): loss.clone().detach(),
|
295 |
+
"{}/accuracy".format(split): accuracy,
|
296 |
+
}
|
297 |
+
|
298 |
+
if posteriors is not None:
|
299 |
+
log[f"{split}/mean"] = posteriors.mean.mean().detach()
|
300 |
+
log[f"{split}/std_mean"] = posteriors.std.mean().detach()
|
301 |
+
log[f"{split}/std_max"] = posteriors.std.max().detach()
|
302 |
+
|
303 |
+
return loss, log
|
MeshAnything/miche/michelangelo/models/tsal/sal_perceiver.py
ADDED
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from typing import Optional
|
6 |
+
from einops import repeat
|
7 |
+
import math
|
8 |
+
|
9 |
+
from MeshAnything.miche.michelangelo.models.modules import checkpoint
|
10 |
+
from MeshAnything.miche.michelangelo.models.modules.embedder import FourierEmbedder
|
11 |
+
from MeshAnything.miche.michelangelo.models.modules.distributions import DiagonalGaussianDistribution
|
12 |
+
from MeshAnything.miche.michelangelo.models.modules.transformer_blocks import (
|
13 |
+
ResidualCrossAttentionBlock,
|
14 |
+
Transformer
|
15 |
+
)
|
16 |
+
|
17 |
+
from .tsal_base import ShapeAsLatentModule
|
18 |
+
|
19 |
+
|
20 |
+
class CrossAttentionEncoder(nn.Module):
|
21 |
+
|
22 |
+
def __init__(self, *,
|
23 |
+
device: Optional[torch.device],
|
24 |
+
dtype: Optional[torch.dtype],
|
25 |
+
num_latents: int,
|
26 |
+
fourier_embedder: FourierEmbedder,
|
27 |
+
point_feats: int,
|
28 |
+
width: int,
|
29 |
+
heads: int,
|
30 |
+
layers: int,
|
31 |
+
init_scale: float = 0.25,
|
32 |
+
qkv_bias: bool = True,
|
33 |
+
flash: bool = False,
|
34 |
+
use_ln_post: bool = False,
|
35 |
+
use_checkpoint: bool = False):
|
36 |
+
|
37 |
+
super().__init__()
|
38 |
+
|
39 |
+
self.use_checkpoint = use_checkpoint
|
40 |
+
self.num_latents = num_latents
|
41 |
+
|
42 |
+
self.query = nn.Parameter(torch.randn((num_latents, width), device=device, dtype=dtype) * 0.02)
|
43 |
+
|
44 |
+
self.fourier_embedder = fourier_embedder
|
45 |
+
self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width, device=device, dtype=dtype)
|
46 |
+
self.cross_attn = ResidualCrossAttentionBlock(
|
47 |
+
device=device,
|
48 |
+
dtype=dtype,
|
49 |
+
width=width,
|
50 |
+
heads=heads,
|
51 |
+
init_scale=init_scale,
|
52 |
+
qkv_bias=qkv_bias,
|
53 |
+
flash=flash,
|
54 |
+
)
|
55 |
+
|
56 |
+
self.self_attn = Transformer(
|
57 |
+
device=device,
|
58 |
+
dtype=dtype,
|
59 |
+
n_ctx=num_latents,
|
60 |
+
width=width,
|
61 |
+
layers=layers,
|
62 |
+
heads=heads,
|
63 |
+
init_scale=init_scale,
|
64 |
+
qkv_bias=qkv_bias,
|
65 |
+
flash=flash,
|
66 |
+
use_checkpoint=False
|
67 |
+
)
|
68 |
+
|
69 |
+
if use_ln_post:
|
70 |
+
self.ln_post = nn.LayerNorm(width, dtype=dtype, device=device)
|
71 |
+
else:
|
72 |
+
self.ln_post = None
|
73 |
+
|
74 |
+
def _forward(self, pc, feats):
|
75 |
+
"""
|
76 |
+
|
77 |
+
Args:
|
78 |
+
pc (torch.FloatTensor): [B, N, 3]
|
79 |
+
feats (torch.FloatTensor or None): [B, N, C]
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
|
83 |
+
"""
|
84 |
+
|
85 |
+
bs = pc.shape[0]
|
86 |
+
|
87 |
+
data = self.fourier_embedder(pc)
|
88 |
+
if feats is not None:
|
89 |
+
data = torch.cat([data, feats], dim=-1)
|
90 |
+
data = self.input_proj(data)
|
91 |
+
|
92 |
+
query = repeat(self.query, "m c -> b m c", b=bs)
|
93 |
+
latents = self.cross_attn(query, data)
|
94 |
+
latents = self.self_attn(latents)
|
95 |
+
|
96 |
+
if self.ln_post is not None:
|
97 |
+
latents = self.ln_post(latents)
|
98 |
+
|
99 |
+
return latents, pc
|
100 |
+
|
101 |
+
def forward(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None):
|
102 |
+
"""
|
103 |
+
|
104 |
+
Args:
|
105 |
+
pc (torch.FloatTensor): [B, N, 3]
|
106 |
+
feats (torch.FloatTensor or None): [B, N, C]
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
dict
|
110 |
+
"""
|
111 |
+
|
112 |
+
return checkpoint(self._forward, (pc, feats), self.parameters(), self.use_checkpoint)
|
113 |
+
|
114 |
+
|
115 |
+
class CrossAttentionDecoder(nn.Module):
|
116 |
+
|
117 |
+
def __init__(self, *,
|
118 |
+
device: Optional[torch.device],
|
119 |
+
dtype: Optional[torch.dtype],
|
120 |
+
num_latents: int,
|
121 |
+
out_channels: int,
|
122 |
+
fourier_embedder: FourierEmbedder,
|
123 |
+
width: int,
|
124 |
+
heads: int,
|
125 |
+
init_scale: float = 0.25,
|
126 |
+
qkv_bias: bool = True,
|
127 |
+
flash: bool = False,
|
128 |
+
use_checkpoint: bool = False):
|
129 |
+
|
130 |
+
super().__init__()
|
131 |
+
|
132 |
+
self.use_checkpoint = use_checkpoint
|
133 |
+
self.fourier_embedder = fourier_embedder
|
134 |
+
|
135 |
+
self.query_proj = nn.Linear(self.fourier_embedder.out_dim, width, device=device, dtype=dtype)
|
136 |
+
|
137 |
+
self.cross_attn_decoder = ResidualCrossAttentionBlock(
|
138 |
+
device=device,
|
139 |
+
dtype=dtype,
|
140 |
+
n_data=num_latents,
|
141 |
+
width=width,
|
142 |
+
heads=heads,
|
143 |
+
init_scale=init_scale,
|
144 |
+
qkv_bias=qkv_bias,
|
145 |
+
flash=flash
|
146 |
+
)
|
147 |
+
|
148 |
+
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
|
149 |
+
self.output_proj = nn.Linear(width, out_channels, device=device, dtype=dtype)
|
150 |
+
|
151 |
+
def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
152 |
+
queries = self.query_proj(self.fourier_embedder(queries))
|
153 |
+
x = self.cross_attn_decoder(queries, latents)
|
154 |
+
x = self.ln_post(x)
|
155 |
+
x = self.output_proj(x)
|
156 |
+
return x
|
157 |
+
|
158 |
+
def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
159 |
+
return checkpoint(self._forward, (queries, latents), self.parameters(), self.use_checkpoint)
|
160 |
+
|
161 |
+
|
162 |
+
class ShapeAsLatentPerceiver(ShapeAsLatentModule):
|
163 |
+
def __init__(self, *,
|
164 |
+
device: Optional[torch.device],
|
165 |
+
dtype: Optional[torch.dtype],
|
166 |
+
num_latents: int,
|
167 |
+
point_feats: int = 0,
|
168 |
+
embed_dim: int = 0,
|
169 |
+
num_freqs: int = 8,
|
170 |
+
include_pi: bool = True,
|
171 |
+
width: int,
|
172 |
+
heads: int,
|
173 |
+
num_encoder_layers: int,
|
174 |
+
num_decoder_layers: int,
|
175 |
+
init_scale: float = 0.25,
|
176 |
+
qkv_bias: bool = True,
|
177 |
+
flash: bool = False,
|
178 |
+
use_ln_post: bool = False,
|
179 |
+
use_checkpoint: bool = False):
|
180 |
+
|
181 |
+
super().__init__()
|
182 |
+
|
183 |
+
self.use_checkpoint = use_checkpoint
|
184 |
+
|
185 |
+
self.num_latents = num_latents
|
186 |
+
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
|
187 |
+
|
188 |
+
init_scale = init_scale * math.sqrt(1.0 / width)
|
189 |
+
self.encoder = CrossAttentionEncoder(
|
190 |
+
device=device,
|
191 |
+
dtype=dtype,
|
192 |
+
fourier_embedder=self.fourier_embedder,
|
193 |
+
num_latents=num_latents,
|
194 |
+
point_feats=point_feats,
|
195 |
+
width=width,
|
196 |
+
heads=heads,
|
197 |
+
layers=num_encoder_layers,
|
198 |
+
init_scale=init_scale,
|
199 |
+
qkv_bias=qkv_bias,
|
200 |
+
flash=flash,
|
201 |
+
use_ln_post=use_ln_post,
|
202 |
+
use_checkpoint=use_checkpoint
|
203 |
+
)
|
204 |
+
|
205 |
+
self.embed_dim = embed_dim
|
206 |
+
if embed_dim > 0:
|
207 |
+
# VAE embed
|
208 |
+
self.pre_kl = nn.Linear(width, embed_dim * 2, device=device, dtype=dtype)
|
209 |
+
self.post_kl = nn.Linear(embed_dim, width, device=device, dtype=dtype)
|
210 |
+
self.latent_shape = (num_latents, embed_dim)
|
211 |
+
else:
|
212 |
+
self.latent_shape = (num_latents, width)
|
213 |
+
|
214 |
+
self.transformer = Transformer(
|
215 |
+
device=device,
|
216 |
+
dtype=dtype,
|
217 |
+
n_ctx=num_latents,
|
218 |
+
width=width,
|
219 |
+
layers=num_decoder_layers,
|
220 |
+
heads=heads,
|
221 |
+
init_scale=init_scale,
|
222 |
+
qkv_bias=qkv_bias,
|
223 |
+
flash=flash,
|
224 |
+
use_checkpoint=use_checkpoint
|
225 |
+
)
|
226 |
+
|
227 |
+
# geometry decoder
|
228 |
+
self.geo_decoder = CrossAttentionDecoder(
|
229 |
+
device=device,
|
230 |
+
dtype=dtype,
|
231 |
+
fourier_embedder=self.fourier_embedder,
|
232 |
+
out_channels=1,
|
233 |
+
num_latents=num_latents,
|
234 |
+
width=width,
|
235 |
+
heads=heads,
|
236 |
+
init_scale=init_scale,
|
237 |
+
qkv_bias=qkv_bias,
|
238 |
+
flash=flash,
|
239 |
+
use_checkpoint=use_checkpoint
|
240 |
+
)
|
241 |
+
|
242 |
+
def encode(self,
|
243 |
+
pc: torch.FloatTensor,
|
244 |
+
feats: Optional[torch.FloatTensor] = None,
|
245 |
+
sample_posterior: bool = True):
|
246 |
+
"""
|
247 |
+
|
248 |
+
Args:
|
249 |
+
pc (torch.FloatTensor): [B, N, 3]
|
250 |
+
feats (torch.FloatTensor or None): [B, N, C]
|
251 |
+
sample_posterior (bool):
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
latents (torch.FloatTensor)
|
255 |
+
center_pos (torch.FloatTensor or None):
|
256 |
+
posterior (DiagonalGaussianDistribution or None):
|
257 |
+
"""
|
258 |
+
|
259 |
+
latents, center_pos = self.encoder(pc, feats)
|
260 |
+
|
261 |
+
posterior = None
|
262 |
+
if self.embed_dim > 0:
|
263 |
+
moments = self.pre_kl(latents)
|
264 |
+
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
|
265 |
+
|
266 |
+
if sample_posterior:
|
267 |
+
latents = posterior.sample()
|
268 |
+
else:
|
269 |
+
latents = posterior.mode()
|
270 |
+
|
271 |
+
return latents, center_pos, posterior
|
272 |
+
|
273 |
+
def decode(self, latents: torch.FloatTensor):
|
274 |
+
latents = self.post_kl(latents)
|
275 |
+
return self.transformer(latents)
|
276 |
+
|
277 |
+
def query_geometry(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
278 |
+
logits = self.geo_decoder(queries, latents).squeeze(-1)
|
279 |
+
return logits
|
280 |
+
|
281 |
+
def forward(self,
|
282 |
+
pc: torch.FloatTensor,
|
283 |
+
feats: torch.FloatTensor,
|
284 |
+
volume_queries: torch.FloatTensor,
|
285 |
+
sample_posterior: bool = True):
|
286 |
+
"""
|
287 |
+
|
288 |
+
Args:
|
289 |
+
pc (torch.FloatTensor): [B, N, 3]
|
290 |
+
feats (torch.FloatTensor or None): [B, N, C]
|
291 |
+
volume_queries (torch.FloatTensor): [B, P, 3]
|
292 |
+
sample_posterior (bool):
|
293 |
+
|
294 |
+
Returns:
|
295 |
+
logits (torch.FloatTensor): [B, P]
|
296 |
+
center_pos (torch.FloatTensor): [B, M, 3]
|
297 |
+
posterior (DiagonalGaussianDistribution or None).
|
298 |
+
|
299 |
+
"""
|
300 |
+
|
301 |
+
latents, center_pos, posterior = self.encode(pc, feats, sample_posterior=sample_posterior)
|
302 |
+
|
303 |
+
latents = self.decode(latents)
|
304 |
+
logits = self.query_geometry(volume_queries, latents)
|
305 |
+
|
306 |
+
return logits, center_pos, posterior
|
307 |
+
|
308 |
+
|
309 |
+
class AlignedShapeLatentPerceiver(ShapeAsLatentPerceiver):
|
310 |
+
|
311 |
+
def __init__(self, *,
|
312 |
+
device: Optional[torch.device],
|
313 |
+
dtype: Optional[torch.dtype],
|
314 |
+
num_latents: int,
|
315 |
+
point_feats: int = 0,
|
316 |
+
embed_dim: int = 0,
|
317 |
+
num_freqs: int = 8,
|
318 |
+
include_pi: bool = True,
|
319 |
+
width: int,
|
320 |
+
heads: int,
|
321 |
+
num_encoder_layers: int,
|
322 |
+
num_decoder_layers: int,
|
323 |
+
init_scale: float = 0.25,
|
324 |
+
qkv_bias: bool = True,
|
325 |
+
flash: bool = False,
|
326 |
+
use_ln_post: bool = False,
|
327 |
+
use_checkpoint: bool = False):
|
328 |
+
|
329 |
+
super().__init__(
|
330 |
+
device=device,
|
331 |
+
dtype=dtype,
|
332 |
+
num_latents=1 + num_latents,
|
333 |
+
point_feats=point_feats,
|
334 |
+
embed_dim=embed_dim,
|
335 |
+
num_freqs=num_freqs,
|
336 |
+
include_pi=include_pi,
|
337 |
+
width=width,
|
338 |
+
heads=heads,
|
339 |
+
num_encoder_layers=num_encoder_layers,
|
340 |
+
num_decoder_layers=num_decoder_layers,
|
341 |
+
init_scale=init_scale,
|
342 |
+
qkv_bias=qkv_bias,
|
343 |
+
flash=flash,
|
344 |
+
use_ln_post=use_ln_post,
|
345 |
+
use_checkpoint=use_checkpoint
|
346 |
+
)
|
347 |
+
|
348 |
+
self.width = width
|
349 |
+
|
350 |
+
def encode(self,
|
351 |
+
pc: torch.FloatTensor,
|
352 |
+
feats: Optional[torch.FloatTensor] = None,
|
353 |
+
sample_posterior: bool = True):
|
354 |
+
"""
|
355 |
+
|
356 |
+
Args:
|
357 |
+
pc (torch.FloatTensor): [B, N, 3]
|
358 |
+
feats (torch.FloatTensor or None): [B, N, c]
|
359 |
+
sample_posterior (bool):
|
360 |
+
|
361 |
+
Returns:
|
362 |
+
shape_embed (torch.FloatTensor)
|
363 |
+
kl_embed (torch.FloatTensor):
|
364 |
+
posterior (DiagonalGaussianDistribution or None):
|
365 |
+
"""
|
366 |
+
|
367 |
+
shape_embed, latents = self.encode_latents(pc, feats)
|
368 |
+
kl_embed, posterior = self.encode_kl_embed(latents, sample_posterior)
|
369 |
+
|
370 |
+
return shape_embed, kl_embed, posterior
|
371 |
+
|
372 |
+
def encode_latents(self,
|
373 |
+
pc: torch.FloatTensor,
|
374 |
+
feats: Optional[torch.FloatTensor] = None):
|
375 |
+
|
376 |
+
x, _ = self.encoder(pc, feats)
|
377 |
+
|
378 |
+
shape_embed = x[:, 0]
|
379 |
+
latents = x[:, 1:]
|
380 |
+
|
381 |
+
return shape_embed, latents
|
382 |
+
|
383 |
+
def encode_kl_embed(self, latents: torch.FloatTensor, sample_posterior: bool = True):
|
384 |
+
posterior = None
|
385 |
+
if self.embed_dim > 0:
|
386 |
+
moments = self.pre_kl(latents)
|
387 |
+
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
|
388 |
+
|
389 |
+
if sample_posterior:
|
390 |
+
kl_embed = posterior.sample()
|
391 |
+
else:
|
392 |
+
kl_embed = posterior.mode()
|
393 |
+
else:
|
394 |
+
kl_embed = latents
|
395 |
+
|
396 |
+
return kl_embed, posterior
|
397 |
+
|
398 |
+
def forward(self,
|
399 |
+
pc: torch.FloatTensor,
|
400 |
+
feats: torch.FloatTensor,
|
401 |
+
volume_queries: torch.FloatTensor,
|
402 |
+
sample_posterior: bool = True):
|
403 |
+
"""
|
404 |
+
|
405 |
+
Args:
|
406 |
+
pc (torch.FloatTensor): [B, N, 3]
|
407 |
+
feats (torch.FloatTensor or None): [B, N, C]
|
408 |
+
volume_queries (torch.FloatTensor): [B, P, 3]
|
409 |
+
sample_posterior (bool):
|
410 |
+
|
411 |
+
Returns:
|
412 |
+
shape_embed (torch.FloatTensor): [B, projection_dim]
|
413 |
+
logits (torch.FloatTensor): [B, M]
|
414 |
+
posterior (DiagonalGaussianDistribution or None).
|
415 |
+
|
416 |
+
"""
|
417 |
+
|
418 |
+
shape_embed, kl_embed, posterior = self.encode(pc, feats, sample_posterior=sample_posterior)
|
419 |
+
|
420 |
+
latents = self.decode(kl_embed)
|
421 |
+
logits = self.query_geometry(volume_queries, latents)
|
422 |
+
|
423 |
+
return shape_embed, logits, posterior
|
MeshAnything/miche/michelangelo/models/tsal/sal_pl_module.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import List, Tuple, Dict, Optional
|
4 |
+
from omegaconf import DictConfig
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.optim import lr_scheduler
|
8 |
+
import pytorch_lightning as pl
|
9 |
+
from typing import Union
|
10 |
+
from functools import partial
|
11 |
+
|
12 |
+
from MeshAnything.miche.michelangelo.utils import instantiate_from_config
|
13 |
+
|
14 |
+
from .inference_utils import extract_geometry
|
15 |
+
from .tsal_base import (
|
16 |
+
ShapeAsLatentModule,
|
17 |
+
Latent2MeshOutput,
|
18 |
+
Point2MeshOutput
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
class ShapeAsLatentPLModule(pl.LightningModule):
|
23 |
+
|
24 |
+
def __init__(self, *,
|
25 |
+
module_cfg,
|
26 |
+
loss_cfg,
|
27 |
+
optimizer_cfg: Optional[DictConfig] = None,
|
28 |
+
ckpt_path: Optional[str] = None,
|
29 |
+
ignore_keys: Union[Tuple[str], List[str]] = ()):
|
30 |
+
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.sal: ShapeAsLatentModule = instantiate_from_config(module_cfg, device=None, dtype=None)
|
34 |
+
|
35 |
+
self.loss = instantiate_from_config(loss_cfg)
|
36 |
+
|
37 |
+
self.optimizer_cfg = optimizer_cfg
|
38 |
+
|
39 |
+
if ckpt_path is not None:
|
40 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
41 |
+
|
42 |
+
self.save_hyperparameters()
|
43 |
+
|
44 |
+
@property
|
45 |
+
def latent_shape(self):
|
46 |
+
return self.sal.latent_shape
|
47 |
+
|
48 |
+
@property
|
49 |
+
def zero_rank(self):
|
50 |
+
if self._trainer:
|
51 |
+
zero_rank = self.trainer.local_rank == 0
|
52 |
+
else:
|
53 |
+
zero_rank = True
|
54 |
+
|
55 |
+
return zero_rank
|
56 |
+
|
57 |
+
def init_from_ckpt(self, path, ignore_keys=()):
|
58 |
+
state_dict = torch.load(path, map_location="cpu")["state_dict"]
|
59 |
+
|
60 |
+
keys = list(state_dict.keys())
|
61 |
+
for k in keys:
|
62 |
+
for ik in ignore_keys:
|
63 |
+
if k.startswith(ik):
|
64 |
+
print("Deleting key {} from state_dict.".format(k))
|
65 |
+
del state_dict[k]
|
66 |
+
|
67 |
+
missing, unexpected = self.load_state_dict(state_dict, strict=False)
|
68 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
69 |
+
if len(missing) > 0:
|
70 |
+
print(f"Missing Keys: {missing}")
|
71 |
+
print(f"Unexpected Keys: {unexpected}")
|
72 |
+
|
73 |
+
def configure_optimizers(self) -> Tuple[List, List]:
|
74 |
+
lr = self.learning_rate
|
75 |
+
|
76 |
+
# optimizers = [torch.optim.AdamW(self.sal.parameters(), lr=lr, betas=(0.9, 0.99), weight_decay=1e-4)]
|
77 |
+
# optimizers = [torch.optim.AdamW(self.sal.parameters(), lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
78 |
+
|
79 |
+
if self.optimizer_cfg is None:
|
80 |
+
optimizers = [torch.optim.AdamW(self.sal.parameters(), lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
81 |
+
schedulers = []
|
82 |
+
else:
|
83 |
+
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=self.sal.parameters())
|
84 |
+
scheduler_func = instantiate_from_config(
|
85 |
+
self.optimizer_cfg.scheduler,
|
86 |
+
max_decay_steps=self.trainer.max_steps,
|
87 |
+
lr_max=lr
|
88 |
+
)
|
89 |
+
scheduler = {
|
90 |
+
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
|
91 |
+
"interval": "step",
|
92 |
+
"frequency": 1
|
93 |
+
}
|
94 |
+
optimizers = [optimizer]
|
95 |
+
schedulers = [scheduler]
|
96 |
+
|
97 |
+
return optimizers, schedulers
|
98 |
+
|
99 |
+
def forward(self,
|
100 |
+
pc: torch.FloatTensor,
|
101 |
+
feats: torch.FloatTensor,
|
102 |
+
volume_queries: torch.FloatTensor):
|
103 |
+
|
104 |
+
logits, center_pos, posterior = self.sal(pc, feats, volume_queries)
|
105 |
+
|
106 |
+
return posterior, logits
|
107 |
+
|
108 |
+
def encode(self, surface: torch.FloatTensor, sample_posterior=True):
|
109 |
+
|
110 |
+
pc = surface[..., 0:3]
|
111 |
+
feats = surface[..., 3:6]
|
112 |
+
|
113 |
+
latents, center_pos, posterior = self.sal.encode(
|
114 |
+
pc=pc, feats=feats, sample_posterior=sample_posterior
|
115 |
+
)
|
116 |
+
|
117 |
+
return latents
|
118 |
+
|
119 |
+
def decode(self,
|
120 |
+
z_q,
|
121 |
+
bounds: Union[Tuple[float], List[float], float] = 1.1,
|
122 |
+
octree_depth: int = 7,
|
123 |
+
num_chunks: int = 10000) -> List[Latent2MeshOutput]:
|
124 |
+
|
125 |
+
latents = self.sal.decode(z_q) # latents: [bs, num_latents, dim]
|
126 |
+
outputs = self.latent2mesh(latents, bounds=bounds, octree_depth=octree_depth, num_chunks=num_chunks)
|
127 |
+
|
128 |
+
return outputs
|
129 |
+
|
130 |
+
def training_step(self, batch: Dict[str, torch.FloatTensor],
|
131 |
+
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
132 |
+
"""
|
133 |
+
|
134 |
+
Args:
|
135 |
+
batch (dict): the batch sample, and it contains:
|
136 |
+
- surface (torch.FloatTensor): [bs, n_surface, (3 + input_dim)]
|
137 |
+
- geo_points (torch.FloatTensor): [bs, n_pts, (3 + 1)]
|
138 |
+
|
139 |
+
batch_idx (int):
|
140 |
+
|
141 |
+
optimizer_idx (int):
|
142 |
+
|
143 |
+
Returns:
|
144 |
+
loss (torch.FloatTensor):
|
145 |
+
|
146 |
+
"""
|
147 |
+
|
148 |
+
pc = batch["surface"][..., 0:3]
|
149 |
+
feats = batch["surface"][..., 3:]
|
150 |
+
|
151 |
+
volume_queries = batch["geo_points"][..., 0:3]
|
152 |
+
volume_labels = batch["geo_points"][..., -1]
|
153 |
+
|
154 |
+
posterior, logits = self(
|
155 |
+
pc=pc, feats=feats, volume_queries=volume_queries
|
156 |
+
)
|
157 |
+
aeloss, log_dict_ae = self.loss(posterior, logits, volume_labels, split="train")
|
158 |
+
|
159 |
+
self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=logits.shape[0],
|
160 |
+
sync_dist=False, rank_zero_only=True)
|
161 |
+
|
162 |
+
return aeloss
|
163 |
+
|
164 |
+
def validation_step(self, batch: Dict[str, torch.FloatTensor], batch_idx: int) -> torch.FloatTensor:
|
165 |
+
|
166 |
+
pc = batch["surface"][..., 0:3]
|
167 |
+
feats = batch["surface"][..., 3:]
|
168 |
+
|
169 |
+
volume_queries = batch["geo_points"][..., 0:3]
|
170 |
+
volume_labels = batch["geo_points"][..., -1]
|
171 |
+
|
172 |
+
posterior, logits = self(
|
173 |
+
pc=pc, feats=feats, volume_queries=volume_queries,
|
174 |
+
)
|
175 |
+
aeloss, log_dict_ae = self.loss(posterior, logits, volume_labels, split="val")
|
176 |
+
|
177 |
+
self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=logits.shape[0],
|
178 |
+
sync_dist=False, rank_zero_only=True)
|
179 |
+
|
180 |
+
return aeloss
|
181 |
+
|
182 |
+
def point2mesh(self,
|
183 |
+
pc: torch.FloatTensor,
|
184 |
+
feats: torch.FloatTensor,
|
185 |
+
bounds: Union[Tuple[float], List[float]] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
|
186 |
+
octree_depth: int = 7,
|
187 |
+
num_chunks: int = 10000) -> List[Point2MeshOutput]:
|
188 |
+
|
189 |
+
"""
|
190 |
+
|
191 |
+
Args:
|
192 |
+
pc:
|
193 |
+
feats:
|
194 |
+
bounds:
|
195 |
+
octree_depth:
|
196 |
+
num_chunks:
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
mesh_outputs (List[MeshOutput]): the mesh outputs list.
|
200 |
+
|
201 |
+
"""
|
202 |
+
|
203 |
+
outputs = []
|
204 |
+
|
205 |
+
device = pc.device
|
206 |
+
bs = pc.shape[0]
|
207 |
+
|
208 |
+
# 1. point encoder + latents transformer
|
209 |
+
latents, center_pos, posterior = self.sal.encode(pc, feats)
|
210 |
+
latents = self.sal.decode(latents) # latents: [bs, num_latents, dim]
|
211 |
+
|
212 |
+
geometric_func = partial(self.sal.query_geometry, latents=latents)
|
213 |
+
|
214 |
+
# 2. decode geometry
|
215 |
+
mesh_v_f, has_surface = extract_geometry(
|
216 |
+
geometric_func=geometric_func,
|
217 |
+
device=device,
|
218 |
+
batch_size=bs,
|
219 |
+
bounds=bounds,
|
220 |
+
octree_depth=octree_depth,
|
221 |
+
num_chunks=num_chunks,
|
222 |
+
disable=not self.zero_rank
|
223 |
+
)
|
224 |
+
|
225 |
+
# 3. decode texture
|
226 |
+
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
|
227 |
+
if not is_surface:
|
228 |
+
outputs.append(None)
|
229 |
+
continue
|
230 |
+
|
231 |
+
out = Point2MeshOutput()
|
232 |
+
out.mesh_v = mesh_v
|
233 |
+
out.mesh_f = mesh_f
|
234 |
+
out.pc = torch.cat([pc[i], feats[i]], dim=-1).cpu().numpy()
|
235 |
+
|
236 |
+
if center_pos is not None:
|
237 |
+
out.center = center_pos[i].cpu().numpy()
|
238 |
+
|
239 |
+
outputs.append(out)
|
240 |
+
|
241 |
+
return outputs
|
242 |
+
|
243 |
+
def latent2mesh(self,
|
244 |
+
latents: torch.FloatTensor,
|
245 |
+
bounds: Union[Tuple[float], List[float], float] = 1.1,
|
246 |
+
octree_depth: int = 7,
|
247 |
+
num_chunks: int = 10000) -> List[Latent2MeshOutput]:
|
248 |
+
|
249 |
+
"""
|
250 |
+
|
251 |
+
Args:
|
252 |
+
latents: [bs, num_latents, dim]
|
253 |
+
bounds:
|
254 |
+
octree_depth:
|
255 |
+
num_chunks:
|
256 |
+
|
257 |
+
Returns:
|
258 |
+
mesh_outputs (List[MeshOutput]): the mesh outputs list.
|
259 |
+
|
260 |
+
"""
|
261 |
+
|
262 |
+
outputs = []
|
263 |
+
|
264 |
+
geometric_func = partial(self.sal.query_geometry, latents=latents)
|
265 |
+
|
266 |
+
# 2. decode geometry
|
267 |
+
device = latents.device
|
268 |
+
mesh_v_f, has_surface = extract_geometry(
|
269 |
+
geometric_func=geometric_func,
|
270 |
+
device=device,
|
271 |
+
batch_size=len(latents),
|
272 |
+
bounds=bounds,
|
273 |
+
octree_depth=octree_depth,
|
274 |
+
num_chunks=num_chunks,
|
275 |
+
disable=not self.zero_rank
|
276 |
+
)
|
277 |
+
|
278 |
+
# 3. decode texture
|
279 |
+
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
|
280 |
+
if not is_surface:
|
281 |
+
outputs.append(None)
|
282 |
+
continue
|
283 |
+
|
284 |
+
out = Latent2MeshOutput()
|
285 |
+
out.mesh_v = mesh_v
|
286 |
+
out.mesh_f = mesh_f
|
287 |
+
|
288 |
+
outputs.append(out)
|
289 |
+
|
290 |
+
return outputs
|
MeshAnything/miche/michelangelo/models/tsal/tsal_base.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
from typing import Tuple, List, Optional
|
5 |
+
|
6 |
+
|
7 |
+
class Point2MeshOutput(object):
|
8 |
+
def __init__(self):
|
9 |
+
self.mesh_v = None
|
10 |
+
self.mesh_f = None
|
11 |
+
self.center = None
|
12 |
+
self.pc = None
|
13 |
+
|
14 |
+
|
15 |
+
class Latent2MeshOutput(object):
|
16 |
+
|
17 |
+
def __init__(self):
|
18 |
+
self.mesh_v = None
|
19 |
+
self.mesh_f = None
|
20 |
+
|
21 |
+
|
22 |
+
class AlignedMeshOutput(object):
|
23 |
+
|
24 |
+
def __init__(self):
|
25 |
+
self.mesh_v = None
|
26 |
+
self.mesh_f = None
|
27 |
+
self.surface = None
|
28 |
+
self.image = None
|
29 |
+
self.text: Optional[str] = None
|
30 |
+
self.shape_text_similarity: Optional[float] = None
|
31 |
+
self.shape_image_similarity: Optional[float] = None
|
32 |
+
|
33 |
+
|
34 |
+
class ShapeAsLatentPLModule(nn.Module):
|
35 |
+
latent_shape: Tuple[int]
|
36 |
+
|
37 |
+
def encode(self, surface, *args, **kwargs):
|
38 |
+
raise NotImplementedError
|
39 |
+
|
40 |
+
def decode(self, z_q, *args, **kwargs):
|
41 |
+
raise NotImplementedError
|
42 |
+
|
43 |
+
def latent2mesh(self, latents, *args, **kwargs) -> List[Latent2MeshOutput]:
|
44 |
+
raise NotImplementedError
|
45 |
+
|
46 |
+
def point2mesh(self, *args, **kwargs) -> List[Point2MeshOutput]:
|
47 |
+
raise NotImplementedError
|
48 |
+
|
49 |
+
|
50 |
+
class ShapeAsLatentModule(nn.Module):
|
51 |
+
latent_shape: Tuple[int, int]
|
52 |
+
|
53 |
+
def __init__(self, *args, **kwargs):
|
54 |
+
super().__init__()
|
55 |
+
|
56 |
+
def encode(self, *args, **kwargs):
|
57 |
+
raise NotImplementedError
|
58 |
+
|
59 |
+
def decode(self, *args, **kwargs):
|
60 |
+
raise NotImplementedError
|
61 |
+
|
62 |
+
def query_geometry(self, *args, **kwargs):
|
63 |
+
raise NotImplementedError
|
64 |
+
|
65 |
+
|
66 |
+
class AlignedShapeAsLatentPLModule(nn.Module):
|
67 |
+
latent_shape: Tuple[int]
|
68 |
+
|
69 |
+
def set_shape_model_only(self):
|
70 |
+
raise NotImplementedError
|
71 |
+
|
72 |
+
def encode(self, surface, *args, **kwargs):
|
73 |
+
raise NotImplementedError
|
74 |
+
|
75 |
+
def decode(self, z_q, *args, **kwargs):
|
76 |
+
raise NotImplementedError
|
77 |
+
|
78 |
+
def latent2mesh(self, latents, *args, **kwargs) -> List[Latent2MeshOutput]:
|
79 |
+
raise NotImplementedError
|
80 |
+
|
81 |
+
def point2mesh(self, *args, **kwargs) -> List[Point2MeshOutput]:
|
82 |
+
raise NotImplementedError
|
83 |
+
|
84 |
+
|
85 |
+
class AlignedShapeAsLatentModule(nn.Module):
|
86 |
+
shape_model: ShapeAsLatentModule
|
87 |
+
latent_shape: Tuple[int, int]
|
88 |
+
|
89 |
+
def __init__(self, *args, **kwargs):
|
90 |
+
super().__init__()
|
91 |
+
|
92 |
+
def set_shape_model_only(self):
|
93 |
+
raise NotImplementedError
|
94 |
+
|
95 |
+
def encode_image_embed(self, *args, **kwargs):
|
96 |
+
raise NotImplementedError
|
97 |
+
|
98 |
+
def encode_text_embed(self, *args, **kwargs):
|
99 |
+
raise NotImplementedError
|
100 |
+
|
101 |
+
def encode_shape_embed(self, *args, **kwargs):
|
102 |
+
raise NotImplementedError
|
103 |
+
|
104 |
+
|
105 |
+
class TexturedShapeAsLatentModule(nn.Module):
|
106 |
+
|
107 |
+
def __init__(self, *args, **kwargs):
|
108 |
+
super().__init__()
|
109 |
+
|
110 |
+
def encode(self, *args, **kwargs):
|
111 |
+
raise NotImplementedError
|
112 |
+
|
113 |
+
def decode(self, *args, **kwargs):
|
114 |
+
raise NotImplementedError
|
115 |
+
|
116 |
+
def query_geometry(self, *args, **kwargs):
|
117 |
+
raise NotImplementedError
|
118 |
+
|
119 |
+
def query_color(self, *args, **kwargs):
|
120 |
+
raise NotImplementedError
|
MeshAnything/miche/michelangelo/utils/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .misc import instantiate_from_config
|
MeshAnything/miche/michelangelo/utils/eval.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def compute_psnr(x, y, data_range: float = 2, eps: float = 1e-7):
|
7 |
+
|
8 |
+
mse = torch.mean((x - y) ** 2)
|
9 |
+
psnr = 10 * torch.log10(data_range / (mse + eps))
|
10 |
+
|
11 |
+
return psnr
|
12 |
+
|
MeshAnything/miche/michelangelo/utils/io.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import os
|
4 |
+
import io
|
5 |
+
import tarfile
|
6 |
+
import json
|
7 |
+
import numpy as np
|
8 |
+
import numpy.lib.format
|
9 |
+
|
10 |
+
|
11 |
+
def mkdir(path):
|
12 |
+
os.makedirs(path, exist_ok=True)
|
13 |
+
return path
|
14 |
+
|
15 |
+
|
16 |
+
def npy_loads(data):
|
17 |
+
stream = io.BytesIO(data)
|
18 |
+
return np.lib.format.read_array(stream)
|
19 |
+
|
20 |
+
|
21 |
+
def npz_loads(data):
|
22 |
+
return np.load(io.BytesIO(data))
|
23 |
+
|
24 |
+
|
25 |
+
def json_loads(data):
|
26 |
+
return json.loads(data)
|
27 |
+
|
28 |
+
|
29 |
+
def load_json(filepath):
|
30 |
+
with open(filepath, "r") as f:
|
31 |
+
data = json.load(f)
|
32 |
+
return data
|
33 |
+
|
34 |
+
|
35 |
+
def write_json(filepath, data):
|
36 |
+
with open(filepath, "w") as f:
|
37 |
+
json.dump(data, f, indent=2)
|
38 |
+
|
39 |
+
|
40 |
+
def extract_tar(tar_path, tar_cache_folder):
|
41 |
+
|
42 |
+
with tarfile.open(tar_path, "r") as tar:
|
43 |
+
tar.extractall(path=tar_cache_folder)
|
44 |
+
|
45 |
+
tar_uids = sorted(os.listdir(tar_cache_folder))
|
46 |
+
print(f"extract tar: {tar_path} to {tar_cache_folder}")
|
47 |
+
return tar_uids
|
MeshAnything/miche/michelangelo/utils/misc.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import importlib
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.distributed as dist
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
def get_obj_from_str(string, reload=False):
|
11 |
+
module, cls = string.rsplit(".", 1)
|
12 |
+
if reload:
|
13 |
+
module_imp = importlib.import_module(module)
|
14 |
+
importlib.reload(module_imp)
|
15 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
16 |
+
|
17 |
+
|
18 |
+
def get_obj_from_config(config):
|
19 |
+
if "target" not in config:
|
20 |
+
raise KeyError("Expected key `target` to instantiate.")
|
21 |
+
|
22 |
+
return get_obj_from_str(config["target"])
|
23 |
+
|
24 |
+
|
25 |
+
def instantiate_from_config(config, **kwargs):
|
26 |
+
if "target" not in config:
|
27 |
+
raise KeyError("Expected key `target` to instantiate.")
|
28 |
+
|
29 |
+
cls = get_obj_from_str(config["target"])
|
30 |
+
|
31 |
+
params = config.get("params", dict())
|
32 |
+
# params.update(kwargs)
|
33 |
+
# instance = cls(**params)
|
34 |
+
kwargs.update(params)
|
35 |
+
instance = cls(**kwargs)
|
36 |
+
|
37 |
+
return instance
|
38 |
+
|
39 |
+
|
40 |
+
def is_dist_avail_and_initialized():
|
41 |
+
if not dist.is_available():
|
42 |
+
return False
|
43 |
+
if not dist.is_initialized():
|
44 |
+
return False
|
45 |
+
return True
|
46 |
+
|
47 |
+
|
48 |
+
def get_rank():
|
49 |
+
if not is_dist_avail_and_initialized():
|
50 |
+
return 0
|
51 |
+
return dist.get_rank()
|
52 |
+
|
53 |
+
|
54 |
+
def get_world_size():
|
55 |
+
if not is_dist_avail_and_initialized():
|
56 |
+
return 1
|
57 |
+
return dist.get_world_size()
|
58 |
+
|
59 |
+
|
60 |
+
def all_gather_batch(tensors):
|
61 |
+
"""
|
62 |
+
Performs all_gather operation on the provided tensors.
|
63 |
+
"""
|
64 |
+
# Queue the gathered tensors
|
65 |
+
world_size = get_world_size()
|
66 |
+
# There is no need for reduction in the single-proc case
|
67 |
+
if world_size == 1:
|
68 |
+
return tensors
|
69 |
+
tensor_list = []
|
70 |
+
output_tensor = []
|
71 |
+
for tensor in tensors:
|
72 |
+
tensor_all = [torch.ones_like(tensor) for _ in range(world_size)]
|
73 |
+
dist.all_gather(
|
74 |
+
tensor_all,
|
75 |
+
tensor,
|
76 |
+
async_op=False # performance opt
|
77 |
+
)
|
78 |
+
|
79 |
+
tensor_list.append(tensor_all)
|
80 |
+
|
81 |
+
for tensor_all in tensor_list:
|
82 |
+
output_tensor.append(torch.cat(tensor_all, dim=0))
|
83 |
+
return output_tensor
|
MeshAnything/miche/michelangelo/utils/visualizers/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
MeshAnything/miche/michelangelo/utils/visualizers/color_util.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
|
4 |
+
|
5 |
+
# Helper functions
|
6 |
+
def get_colors(inp, colormap="viridis", normalize=True, vmin=None, vmax=None):
|
7 |
+
colormap = plt.cm.get_cmap(colormap)
|
8 |
+
if normalize:
|
9 |
+
vmin = np.min(inp)
|
10 |
+
vmax = np.max(inp)
|
11 |
+
|
12 |
+
norm = plt.Normalize(vmin, vmax)
|
13 |
+
return colormap(norm(inp))[:, :3]
|
14 |
+
|
15 |
+
|
16 |
+
def gen_checkers(n_checkers_x, n_checkers_y, width=256, height=256):
|
17 |
+
# tex dims need to be power of two.
|
18 |
+
array = np.ones((width, height, 3), dtype='float32')
|
19 |
+
|
20 |
+
# width in texels of each checker
|
21 |
+
checker_w = width / n_checkers_x
|
22 |
+
checker_h = height / n_checkers_y
|
23 |
+
|
24 |
+
for y in range(height):
|
25 |
+
for x in range(width):
|
26 |
+
color_key = int(x / checker_w) + int(y / checker_h)
|
27 |
+
if color_key % 2 == 0:
|
28 |
+
array[x, y, :] = [1., 0.874, 0.0]
|
29 |
+
else:
|
30 |
+
array[x, y, :] = [0., 0., 0.]
|
31 |
+
return array
|
32 |
+
|
33 |
+
|
34 |
+
def gen_circle(width=256, height=256):
|
35 |
+
xx, yy = np.mgrid[:width, :height]
|
36 |
+
circle = (xx - width / 2 + 0.5) ** 2 + (yy - height / 2 + 0.5) ** 2
|
37 |
+
array = np.ones((width, height, 4), dtype='float32')
|
38 |
+
array[:, :, 0] = (circle <= width)
|
39 |
+
array[:, :, 1] = (circle <= width)
|
40 |
+
array[:, :, 2] = (circle <= width)
|
41 |
+
array[:, :, 3] = circle <= width
|
42 |
+
return array
|
43 |
+
|
MeshAnything/miche/michelangelo/utils/visualizers/html_util.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import io
|
3 |
+
import base64
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
|
8 |
+
def to_html_frame(content):
|
9 |
+
|
10 |
+
html_frame = f"""
|
11 |
+
<html>
|
12 |
+
<body>
|
13 |
+
{content}
|
14 |
+
</body>
|
15 |
+
</html>
|
16 |
+
"""
|
17 |
+
|
18 |
+
return html_frame
|
19 |
+
|
20 |
+
|
21 |
+
def to_single_row_table(caption: str, content: str):
|
22 |
+
|
23 |
+
table_html = f"""
|
24 |
+
<table border = "1">
|
25 |
+
<caption>{caption}</caption>
|
26 |
+
<tr>
|
27 |
+
<td>{content}</td>
|
28 |
+
</tr>
|
29 |
+
</table>
|
30 |
+
"""
|
31 |
+
|
32 |
+
return table_html
|
33 |
+
|
34 |
+
|
35 |
+
def to_image_embed_tag(image: np.ndarray):
|
36 |
+
|
37 |
+
# Convert np.ndarray to bytes
|
38 |
+
img = Image.fromarray(image)
|
39 |
+
raw_bytes = io.BytesIO()
|
40 |
+
img.save(raw_bytes, "PNG")
|
41 |
+
|
42 |
+
# Encode bytes to base64
|
43 |
+
image_base64 = base64.b64encode(raw_bytes.getvalue()).decode("utf-8")
|
44 |
+
|
45 |
+
image_tag = f"""
|
46 |
+
<img src="data:image/png;base64,{image_base64}" alt="Embedded Image">
|
47 |
+
"""
|
48 |
+
|
49 |
+
return image_tag
|
MeshAnything/miche/michelangelo/utils/visualizers/pythreejs_viewer.py
ADDED
@@ -0,0 +1,534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from ipywidgets import embed
|
3 |
+
import pythreejs as p3s
|
4 |
+
import uuid
|
5 |
+
|
6 |
+
from .color_util import get_colors, gen_circle, gen_checkers
|
7 |
+
|
8 |
+
|
9 |
+
EMBED_URL = "https://cdn.jsdelivr.net/npm/@jupyter-widgets/[email protected]/dist/embed-amd.js"
|
10 |
+
|
11 |
+
|
12 |
+
class PyThreeJSViewer(object):
|
13 |
+
|
14 |
+
def __init__(self, settings, render_mode="WEBSITE"):
|
15 |
+
self.render_mode = render_mode
|
16 |
+
self.__update_settings(settings)
|
17 |
+
self._light = p3s.DirectionalLight(color='white', position=[0, 0, 1], intensity=0.6)
|
18 |
+
self._light2 = p3s.AmbientLight(intensity=0.5)
|
19 |
+
self._cam = p3s.PerspectiveCamera(position=[0, 0, 1], lookAt=[0, 0, 0], fov=self.__s["fov"],
|
20 |
+
aspect=self.__s["width"] / self.__s["height"], children=[self._light])
|
21 |
+
self._orbit = p3s.OrbitControls(controlling=self._cam)
|
22 |
+
self._scene = p3s.Scene(children=[self._cam, self._light2], background=self.__s["background"]) # "#4c4c80"
|
23 |
+
self._renderer = p3s.Renderer(camera=self._cam, scene=self._scene, controls=[self._orbit],
|
24 |
+
width=self.__s["width"], height=self.__s["height"],
|
25 |
+
antialias=self.__s["antialias"])
|
26 |
+
|
27 |
+
self.__objects = {}
|
28 |
+
self.__cnt = 0
|
29 |
+
|
30 |
+
def jupyter_mode(self):
|
31 |
+
self.render_mode = "JUPYTER"
|
32 |
+
|
33 |
+
def offline(self):
|
34 |
+
self.render_mode = "OFFLINE"
|
35 |
+
|
36 |
+
def website(self):
|
37 |
+
self.render_mode = "WEBSITE"
|
38 |
+
|
39 |
+
def __get_shading(self, shading):
|
40 |
+
shad = {"flat": True, "wireframe": False, "wire_width": 0.03, "wire_color": "black",
|
41 |
+
"side": 'DoubleSide', "colormap": "viridis", "normalize": [None, None],
|
42 |
+
"bbox": False, "roughness": 0.5, "metalness": 0.25, "reflectivity": 1.0,
|
43 |
+
"line_width": 1.0, "line_color": "black",
|
44 |
+
"point_color": "red", "point_size": 0.01, "point_shape": "circle",
|
45 |
+
"text_color": "red"
|
46 |
+
}
|
47 |
+
for k in shading:
|
48 |
+
shad[k] = shading[k]
|
49 |
+
return shad
|
50 |
+
|
51 |
+
def __update_settings(self, settings={}):
|
52 |
+
sett = {"width": 600, "height": 600, "antialias": True, "scale": 1.5, "background": "#ffffff",
|
53 |
+
"fov": 30}
|
54 |
+
for k in settings:
|
55 |
+
sett[k] = settings[k]
|
56 |
+
self.__s = sett
|
57 |
+
|
58 |
+
def __add_object(self, obj, parent=None):
|
59 |
+
if not parent: # Object is added to global scene and objects dict
|
60 |
+
self.__objects[self.__cnt] = obj
|
61 |
+
self.__cnt += 1
|
62 |
+
self._scene.add(obj["mesh"])
|
63 |
+
else: # Object is added to parent object and NOT to objects dict
|
64 |
+
parent.add(obj["mesh"])
|
65 |
+
|
66 |
+
self.__update_view()
|
67 |
+
|
68 |
+
if self.render_mode == "JUPYTER":
|
69 |
+
return self.__cnt - 1
|
70 |
+
elif self.render_mode == "WEBSITE":
|
71 |
+
return self
|
72 |
+
|
73 |
+
def __add_line_geometry(self, lines, shading, obj=None):
|
74 |
+
lines = lines.astype("float32", copy=False)
|
75 |
+
mi = np.min(lines, axis=0)
|
76 |
+
ma = np.max(lines, axis=0)
|
77 |
+
|
78 |
+
geometry = p3s.LineSegmentsGeometry(positions=lines.reshape((-1, 2, 3)))
|
79 |
+
material = p3s.LineMaterial(linewidth=shading["line_width"], color=shading["line_color"])
|
80 |
+
# , vertexColors='VertexColors'),
|
81 |
+
lines = p3s.LineSegments2(geometry=geometry, material=material) # type='LinePieces')
|
82 |
+
line_obj = {"geometry": geometry, "mesh": lines, "material": material,
|
83 |
+
"max": ma, "min": mi, "type": "Lines", "wireframe": None}
|
84 |
+
|
85 |
+
if obj:
|
86 |
+
return self.__add_object(line_obj, obj), line_obj
|
87 |
+
else:
|
88 |
+
return self.__add_object(line_obj)
|
89 |
+
|
90 |
+
def __update_view(self):
|
91 |
+
if len(self.__objects) == 0:
|
92 |
+
return
|
93 |
+
ma = np.zeros((len(self.__objects), 3))
|
94 |
+
mi = np.zeros((len(self.__objects), 3))
|
95 |
+
for r, obj in enumerate(self.__objects):
|
96 |
+
ma[r] = self.__objects[obj]["max"]
|
97 |
+
mi[r] = self.__objects[obj]["min"]
|
98 |
+
ma = np.max(ma, axis=0)
|
99 |
+
mi = np.min(mi, axis=0)
|
100 |
+
diag = np.linalg.norm(ma - mi)
|
101 |
+
mean = ((ma - mi) / 2 + mi).tolist()
|
102 |
+
scale = self.__s["scale"] * (diag)
|
103 |
+
self._orbit.target = mean
|
104 |
+
self._cam.lookAt(mean)
|
105 |
+
self._cam.position = [mean[0], mean[1], mean[2] + scale]
|
106 |
+
self._light.position = [mean[0], mean[1], mean[2] + scale]
|
107 |
+
|
108 |
+
self._orbit.exec_three_obj_method('update')
|
109 |
+
self._cam.exec_three_obj_method('updateProjectionMatrix')
|
110 |
+
|
111 |
+
def __get_bbox(self, v):
|
112 |
+
m = np.min(v, axis=0)
|
113 |
+
M = np.max(v, axis=0)
|
114 |
+
|
115 |
+
# Corners of the bounding box
|
116 |
+
v_box = np.array([[m[0], m[1], m[2]], [M[0], m[1], m[2]], [M[0], M[1], m[2]], [m[0], M[1], m[2]],
|
117 |
+
[m[0], m[1], M[2]], [M[0], m[1], M[2]], [M[0], M[1], M[2]], [m[0], M[1], M[2]]])
|
118 |
+
|
119 |
+
f_box = np.array([[0, 1], [1, 2], [2, 3], [3, 0], [4, 5], [5, 6], [6, 7], [7, 4],
|
120 |
+
[0, 4], [1, 5], [2, 6], [7, 3]], dtype=np.uint32)
|
121 |
+
return v_box, f_box
|
122 |
+
|
123 |
+
def __get_colors(self, v, f, c, sh):
|
124 |
+
coloring = "VertexColors"
|
125 |
+
if type(c) == np.ndarray and c.size == 3: # Single color
|
126 |
+
colors = np.ones_like(v)
|
127 |
+
colors[:, 0] = c[0]
|
128 |
+
colors[:, 1] = c[1]
|
129 |
+
colors[:, 2] = c[2]
|
130 |
+
# print("Single colors")
|
131 |
+
elif type(c) == np.ndarray and len(c.shape) == 2 and c.shape[1] == 3: # Color values for
|
132 |
+
if c.shape[0] == f.shape[0]: # faces
|
133 |
+
colors = np.hstack([c, c, c]).reshape((-1, 3))
|
134 |
+
coloring = "FaceColors"
|
135 |
+
# print("Face color values")
|
136 |
+
elif c.shape[0] == v.shape[0]: # vertices
|
137 |
+
colors = c
|
138 |
+
# print("Vertex color values")
|
139 |
+
else: # Wrong size, fallback
|
140 |
+
print("Invalid color array given! Supported are numpy arrays.", type(c))
|
141 |
+
colors = np.ones_like(v)
|
142 |
+
colors[:, 0] = 1.0
|
143 |
+
colors[:, 1] = 0.874
|
144 |
+
colors[:, 2] = 0.0
|
145 |
+
elif type(c) == np.ndarray and c.size == f.shape[0]: # Function values for faces
|
146 |
+
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
|
147 |
+
cc = get_colors(c, sh["colormap"], normalize=normalize,
|
148 |
+
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
|
149 |
+
# print(cc.shape)
|
150 |
+
colors = np.hstack([cc, cc, cc]).reshape((-1, 3))
|
151 |
+
coloring = "FaceColors"
|
152 |
+
# print("Face function values")
|
153 |
+
elif type(c) == np.ndarray and c.size == v.shape[0]: # Function values for vertices
|
154 |
+
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
|
155 |
+
colors = get_colors(c, sh["colormap"], normalize=normalize,
|
156 |
+
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
|
157 |
+
# print("Vertex function values")
|
158 |
+
|
159 |
+
else:
|
160 |
+
colors = np.ones_like(v)
|
161 |
+
colors[:, 0] = 1.0
|
162 |
+
colors[:, 1] = 0.874
|
163 |
+
colors[:, 2] = 0.0
|
164 |
+
|
165 |
+
# No color
|
166 |
+
if c is not None:
|
167 |
+
print("Invalid color array given! Supported are numpy arrays.", type(c))
|
168 |
+
|
169 |
+
return colors, coloring
|
170 |
+
|
171 |
+
def __get_point_colors(self, v, c, sh):
|
172 |
+
v_color = True
|
173 |
+
if c is None: # No color given, use global color
|
174 |
+
# conv = mpl.colors.ColorConverter()
|
175 |
+
colors = sh["point_color"] # np.array(conv.to_rgb(sh["point_color"]))
|
176 |
+
v_color = False
|
177 |
+
elif isinstance(c, str): # No color given, use global color
|
178 |
+
# conv = mpl.colors.ColorConverter()
|
179 |
+
colors = c # np.array(conv.to_rgb(c))
|
180 |
+
v_color = False
|
181 |
+
elif type(c) == np.ndarray and len(c.shape) == 2 and c.shape[0] == v.shape[0] and c.shape[1] == 3:
|
182 |
+
# Point color
|
183 |
+
colors = c.astype("float32", copy=False)
|
184 |
+
|
185 |
+
elif isinstance(c, np.ndarray) and len(c.shape) == 2 and c.shape[0] == v.shape[0] and c.shape[1] != 3:
|
186 |
+
# Function values for vertices, but the colors are features
|
187 |
+
c_norm = np.linalg.norm(c, ord=2, axis=-1)
|
188 |
+
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
|
189 |
+
colors = get_colors(c_norm, sh["colormap"], normalize=normalize,
|
190 |
+
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
|
191 |
+
colors = colors.astype("float32", copy=False)
|
192 |
+
|
193 |
+
elif type(c) == np.ndarray and c.size == v.shape[0]: # Function color
|
194 |
+
normalize = sh["normalize"][0] != None and sh["normalize"][1] != None
|
195 |
+
colors = get_colors(c, sh["colormap"], normalize=normalize,
|
196 |
+
vmin=sh["normalize"][0], vmax=sh["normalize"][1])
|
197 |
+
colors = colors.astype("float32", copy=False)
|
198 |
+
# print("Vertex function values")
|
199 |
+
|
200 |
+
else:
|
201 |
+
print("Invalid color array given! Supported are numpy arrays.", type(c))
|
202 |
+
colors = sh["point_color"]
|
203 |
+
v_color = False
|
204 |
+
|
205 |
+
return colors, v_color
|
206 |
+
|
207 |
+
def add_mesh(self, v, f, c=None, uv=None, n=None, shading={}, texture_data=None, **kwargs):
|
208 |
+
shading.update(kwargs)
|
209 |
+
sh = self.__get_shading(shading)
|
210 |
+
mesh_obj = {}
|
211 |
+
|
212 |
+
# it is a tet
|
213 |
+
if v.shape[1] == 3 and f.shape[1] == 4:
|
214 |
+
f_tmp = np.ndarray([f.shape[0] * 4, 3], dtype=f.dtype)
|
215 |
+
for i in range(f.shape[0]):
|
216 |
+
f_tmp[i * 4 + 0] = np.array([f[i][1], f[i][0], f[i][2]])
|
217 |
+
f_tmp[i * 4 + 1] = np.array([f[i][0], f[i][1], f[i][3]])
|
218 |
+
f_tmp[i * 4 + 2] = np.array([f[i][1], f[i][2], f[i][3]])
|
219 |
+
f_tmp[i * 4 + 3] = np.array([f[i][2], f[i][0], f[i][3]])
|
220 |
+
f = f_tmp
|
221 |
+
|
222 |
+
if v.shape[1] == 2:
|
223 |
+
v = np.append(v, np.zeros([v.shape[0], 1]), 1)
|
224 |
+
|
225 |
+
# Type adjustment vertices
|
226 |
+
v = v.astype("float32", copy=False)
|
227 |
+
|
228 |
+
# Color setup
|
229 |
+
colors, coloring = self.__get_colors(v, f, c, sh)
|
230 |
+
|
231 |
+
# Type adjustment faces and colors
|
232 |
+
c = colors.astype("float32", copy=False)
|
233 |
+
|
234 |
+
# Material and geometry setup
|
235 |
+
ba_dict = {"color": p3s.BufferAttribute(c)}
|
236 |
+
if coloring == "FaceColors":
|
237 |
+
verts = np.zeros((f.shape[0] * 3, 3), dtype="float32")
|
238 |
+
for ii in range(f.shape[0]):
|
239 |
+
# print(ii*3, f[ii])
|
240 |
+
verts[ii * 3] = v[f[ii, 0]]
|
241 |
+
verts[ii * 3 + 1] = v[f[ii, 1]]
|
242 |
+
verts[ii * 3 + 2] = v[f[ii, 2]]
|
243 |
+
v = verts
|
244 |
+
else:
|
245 |
+
f = f.astype("uint32", copy=False).ravel()
|
246 |
+
ba_dict["index"] = p3s.BufferAttribute(f, normalized=False)
|
247 |
+
|
248 |
+
ba_dict["position"] = p3s.BufferAttribute(v, normalized=False)
|
249 |
+
|
250 |
+
if uv is not None:
|
251 |
+
uv = (uv - np.min(uv)) / (np.max(uv) - np.min(uv))
|
252 |
+
if texture_data is None:
|
253 |
+
texture_data = gen_checkers(20, 20)
|
254 |
+
tex = p3s.DataTexture(data=texture_data, format="RGBFormat", type="FloatType")
|
255 |
+
material = p3s.MeshStandardMaterial(map=tex, reflectivity=sh["reflectivity"], side=sh["side"],
|
256 |
+
roughness=sh["roughness"], metalness=sh["metalness"],
|
257 |
+
flatShading=sh["flat"],
|
258 |
+
polygonOffset=True, polygonOffsetFactor=1, polygonOffsetUnits=5)
|
259 |
+
ba_dict["uv"] = p3s.BufferAttribute(uv.astype("float32", copy=False))
|
260 |
+
else:
|
261 |
+
material = p3s.MeshStandardMaterial(vertexColors=coloring, reflectivity=sh["reflectivity"],
|
262 |
+
side=sh["side"], roughness=sh["roughness"], metalness=sh["metalness"],
|
263 |
+
flatShading=sh["flat"],
|
264 |
+
polygonOffset=True, polygonOffsetFactor=1, polygonOffsetUnits=5)
|
265 |
+
|
266 |
+
if type(n) != type(None) and coloring == "VertexColors": # TODO: properly handle normals for FaceColors as well
|
267 |
+
ba_dict["normal"] = p3s.BufferAttribute(n.astype("float32", copy=False), normalized=True)
|
268 |
+
|
269 |
+
geometry = p3s.BufferGeometry(attributes=ba_dict)
|
270 |
+
|
271 |
+
if coloring == "VertexColors" and type(n) == type(None):
|
272 |
+
geometry.exec_three_obj_method('computeVertexNormals')
|
273 |
+
elif coloring == "FaceColors" and type(n) == type(None):
|
274 |
+
geometry.exec_three_obj_method('computeFaceNormals')
|
275 |
+
|
276 |
+
# Mesh setup
|
277 |
+
mesh = p3s.Mesh(geometry=geometry, material=material)
|
278 |
+
|
279 |
+
# Wireframe setup
|
280 |
+
mesh_obj["wireframe"] = None
|
281 |
+
if sh["wireframe"]:
|
282 |
+
wf_geometry = p3s.WireframeGeometry(mesh.geometry) # WireframeGeometry
|
283 |
+
wf_material = p3s.LineBasicMaterial(color=sh["wire_color"], linewidth=sh["wire_width"])
|
284 |
+
wireframe = p3s.LineSegments(wf_geometry, wf_material)
|
285 |
+
mesh.add(wireframe)
|
286 |
+
mesh_obj["wireframe"] = wireframe
|
287 |
+
|
288 |
+
# Bounding box setup
|
289 |
+
if sh["bbox"]:
|
290 |
+
v_box, f_box = self.__get_bbox(v)
|
291 |
+
_, bbox = self.add_edges(v_box, f_box, sh, mesh)
|
292 |
+
mesh_obj["bbox"] = [bbox, v_box, f_box]
|
293 |
+
|
294 |
+
# Object setup
|
295 |
+
mesh_obj["max"] = np.max(v, axis=0)
|
296 |
+
mesh_obj["min"] = np.min(v, axis=0)
|
297 |
+
mesh_obj["geometry"] = geometry
|
298 |
+
mesh_obj["mesh"] = mesh
|
299 |
+
mesh_obj["material"] = material
|
300 |
+
mesh_obj["type"] = "Mesh"
|
301 |
+
mesh_obj["shading"] = sh
|
302 |
+
mesh_obj["coloring"] = coloring
|
303 |
+
mesh_obj["arrays"] = [v, f, c] # TODO replays with proper storage or remove if not needed
|
304 |
+
|
305 |
+
return self.__add_object(mesh_obj)
|
306 |
+
|
307 |
+
def add_lines(self, beginning, ending, shading={}, obj=None, **kwargs):
|
308 |
+
shading.update(kwargs)
|
309 |
+
if len(beginning.shape) == 1:
|
310 |
+
if len(beginning) == 2:
|
311 |
+
beginning = np.array([[beginning[0], beginning[1], 0]])
|
312 |
+
else:
|
313 |
+
if beginning.shape[1] == 2:
|
314 |
+
beginning = np.append(
|
315 |
+
beginning, np.zeros([beginning.shape[0], 1]), 1)
|
316 |
+
if len(ending.shape) == 1:
|
317 |
+
if len(ending) == 2:
|
318 |
+
ending = np.array([[ending[0], ending[1], 0]])
|
319 |
+
else:
|
320 |
+
if ending.shape[1] == 2:
|
321 |
+
ending = np.append(
|
322 |
+
ending, np.zeros([ending.shape[0], 1]), 1)
|
323 |
+
|
324 |
+
sh = self.__get_shading(shading)
|
325 |
+
lines = np.hstack([beginning, ending])
|
326 |
+
lines = lines.reshape((-1, 3))
|
327 |
+
return self.__add_line_geometry(lines, sh, obj)
|
328 |
+
|
329 |
+
def add_edges(self, vertices, edges, shading={}, obj=None, **kwargs):
|
330 |
+
shading.update(kwargs)
|
331 |
+
if vertices.shape[1] == 2:
|
332 |
+
vertices = np.append(
|
333 |
+
vertices, np.zeros([vertices.shape[0], 1]), 1)
|
334 |
+
sh = self.__get_shading(shading)
|
335 |
+
lines = np.zeros((edges.size, 3))
|
336 |
+
cnt = 0
|
337 |
+
for e in edges:
|
338 |
+
lines[cnt, :] = vertices[e[0]]
|
339 |
+
lines[cnt + 1, :] = vertices[e[1]]
|
340 |
+
cnt += 2
|
341 |
+
return self.__add_line_geometry(lines, sh, obj)
|
342 |
+
|
343 |
+
def add_points(self, points, c=None, shading={}, obj=None, **kwargs):
|
344 |
+
shading.update(kwargs)
|
345 |
+
if len(points.shape) == 1:
|
346 |
+
if len(points) == 2:
|
347 |
+
points = np.array([[points[0], points[1], 0]])
|
348 |
+
else:
|
349 |
+
if points.shape[1] == 2:
|
350 |
+
points = np.append(
|
351 |
+
points, np.zeros([points.shape[0], 1]), 1)
|
352 |
+
sh = self.__get_shading(shading)
|
353 |
+
points = points.astype("float32", copy=False)
|
354 |
+
mi = np.min(points, axis=0)
|
355 |
+
ma = np.max(points, axis=0)
|
356 |
+
|
357 |
+
g_attributes = {"position": p3s.BufferAttribute(points, normalized=False)}
|
358 |
+
m_attributes = {"size": sh["point_size"]}
|
359 |
+
|
360 |
+
if sh["point_shape"] == "circle": # Plot circles
|
361 |
+
tex = p3s.DataTexture(data=gen_circle(16, 16), format="RGBAFormat", type="FloatType")
|
362 |
+
m_attributes["map"] = tex
|
363 |
+
m_attributes["alphaTest"] = 0.5
|
364 |
+
m_attributes["transparency"] = True
|
365 |
+
else: # Plot squares
|
366 |
+
pass
|
367 |
+
|
368 |
+
colors, v_colors = self.__get_point_colors(points, c, sh)
|
369 |
+
if v_colors: # Colors per point
|
370 |
+
m_attributes["vertexColors"] = 'VertexColors'
|
371 |
+
g_attributes["color"] = p3s.BufferAttribute(colors, normalized=False)
|
372 |
+
|
373 |
+
else: # Colors for all points
|
374 |
+
m_attributes["color"] = colors
|
375 |
+
|
376 |
+
material = p3s.PointsMaterial(**m_attributes)
|
377 |
+
geometry = p3s.BufferGeometry(attributes=g_attributes)
|
378 |
+
points = p3s.Points(geometry=geometry, material=material)
|
379 |
+
point_obj = {"geometry": geometry, "mesh": points, "material": material,
|
380 |
+
"max": ma, "min": mi, "type": "Points", "wireframe": None}
|
381 |
+
|
382 |
+
if obj:
|
383 |
+
return self.__add_object(point_obj, obj), point_obj
|
384 |
+
else:
|
385 |
+
return self.__add_object(point_obj)
|
386 |
+
|
387 |
+
def remove_object(self, obj_id):
|
388 |
+
if obj_id not in self.__objects:
|
389 |
+
print("Invalid object id. Valid ids are: ", list(self.__objects.keys()))
|
390 |
+
return
|
391 |
+
self._scene.remove(self.__objects[obj_id]["mesh"])
|
392 |
+
del self.__objects[obj_id]
|
393 |
+
self.__update_view()
|
394 |
+
|
395 |
+
def reset(self):
|
396 |
+
for obj_id in list(self.__objects.keys()).copy():
|
397 |
+
self._scene.remove(self.__objects[obj_id]["mesh"])
|
398 |
+
del self.__objects[obj_id]
|
399 |
+
self.__update_view()
|
400 |
+
|
401 |
+
def update_object(self, oid=0, vertices=None, colors=None, faces=None):
|
402 |
+
obj = self.__objects[oid]
|
403 |
+
if type(vertices) != type(None):
|
404 |
+
if obj["coloring"] == "FaceColors":
|
405 |
+
f = obj["arrays"][1]
|
406 |
+
verts = np.zeros((f.shape[0] * 3, 3), dtype="float32")
|
407 |
+
for ii in range(f.shape[0]):
|
408 |
+
# print(ii*3, f[ii])
|
409 |
+
verts[ii * 3] = vertices[f[ii, 0]]
|
410 |
+
verts[ii * 3 + 1] = vertices[f[ii, 1]]
|
411 |
+
verts[ii * 3 + 2] = vertices[f[ii, 2]]
|
412 |
+
v = verts
|
413 |
+
|
414 |
+
else:
|
415 |
+
v = vertices.astype("float32", copy=False)
|
416 |
+
obj["geometry"].attributes["position"].array = v
|
417 |
+
# self.wireframe.attributes["position"].array = v # Wireframe updates?
|
418 |
+
obj["geometry"].attributes["position"].needsUpdate = True
|
419 |
+
# obj["geometry"].exec_three_obj_method('computeVertexNormals')
|
420 |
+
if type(colors) != type(None):
|
421 |
+
colors, coloring = self.__get_colors(obj["arrays"][0], obj["arrays"][1], colors, obj["shading"])
|
422 |
+
colors = colors.astype("float32", copy=False)
|
423 |
+
obj["geometry"].attributes["color"].array = colors
|
424 |
+
obj["geometry"].attributes["color"].needsUpdate = True
|
425 |
+
if type(faces) != type(None):
|
426 |
+
if obj["coloring"] == "FaceColors":
|
427 |
+
print("Face updates are currently only possible in vertex color mode.")
|
428 |
+
return
|
429 |
+
f = faces.astype("uint32", copy=False).ravel()
|
430 |
+
print(obj["geometry"].attributes)
|
431 |
+
obj["geometry"].attributes["index"].array = f
|
432 |
+
# self.wireframe.attributes["position"].array = v # Wireframe updates?
|
433 |
+
obj["geometry"].attributes["index"].needsUpdate = True
|
434 |
+
# obj["geometry"].exec_three_obj_method('computeVertexNormals')
|
435 |
+
# self.mesh.geometry.verticesNeedUpdate = True
|
436 |
+
# self.mesh.geometry.elementsNeedUpdate = True
|
437 |
+
# self.update()
|
438 |
+
if self.render_mode == "WEBSITE":
|
439 |
+
return self
|
440 |
+
|
441 |
+
# def update(self):
|
442 |
+
# self.mesh.exec_three_obj_method('update')
|
443 |
+
# self.orbit.exec_three_obj_method('update')
|
444 |
+
# self.cam.exec_three_obj_method('updateProjectionMatrix')
|
445 |
+
# self.scene.exec_three_obj_method('update')
|
446 |
+
|
447 |
+
def add_text(self, text, shading={}, **kwargs):
|
448 |
+
shading.update(kwargs)
|
449 |
+
sh = self.__get_shading(shading)
|
450 |
+
tt = p3s.TextTexture(string=text, color=sh["text_color"])
|
451 |
+
sm = p3s.SpriteMaterial(map=tt)
|
452 |
+
text = p3s.Sprite(material=sm, scaleToTexture=True)
|
453 |
+
self._scene.add(text)
|
454 |
+
|
455 |
+
# def add_widget(self, widget, callback):
|
456 |
+
# self.widgets.append(widget)
|
457 |
+
# widget.observe(callback, names='value')
|
458 |
+
|
459 |
+
# def add_dropdown(self, options, default, desc, cb):
|
460 |
+
# widget = widgets.Dropdown(options=options, value=default, description=desc)
|
461 |
+
# self.__widgets.append(widget)
|
462 |
+
# widget.observe(cb, names="value")
|
463 |
+
# display(widget)
|
464 |
+
|
465 |
+
# def add_button(self, text, cb):
|
466 |
+
# button = widgets.Button(description=text)
|
467 |
+
# self.__widgets.append(button)
|
468 |
+
# button.on_click(cb)
|
469 |
+
# display(button)
|
470 |
+
|
471 |
+
def to_html(self, imports=True, html_frame=True):
|
472 |
+
# Bake positions (fixes centering bug in offline rendering)
|
473 |
+
if len(self.__objects) == 0:
|
474 |
+
return
|
475 |
+
ma = np.zeros((len(self.__objects), 3))
|
476 |
+
mi = np.zeros((len(self.__objects), 3))
|
477 |
+
for r, obj in enumerate(self.__objects):
|
478 |
+
ma[r] = self.__objects[obj]["max"]
|
479 |
+
mi[r] = self.__objects[obj]["min"]
|
480 |
+
ma = np.max(ma, axis=0)
|
481 |
+
mi = np.min(mi, axis=0)
|
482 |
+
diag = np.linalg.norm(ma - mi)
|
483 |
+
mean = (ma - mi) / 2 + mi
|
484 |
+
for r, obj in enumerate(self.__objects):
|
485 |
+
v = self.__objects[obj]["geometry"].attributes["position"].array
|
486 |
+
v -= mean
|
487 |
+
v += np.array([0.0, .9, 0.0]) #! to move the obj to the center of window
|
488 |
+
|
489 |
+
scale = self.__s["scale"] * (diag)
|
490 |
+
self._orbit.target = [0.0, 0.0, 0.0]
|
491 |
+
self._cam.lookAt([0.0, 0.0, 0.0])
|
492 |
+
# self._cam.position = [0.0, 0.0, scale]
|
493 |
+
self._cam.position = [0.0, 0.5, scale * 1.3] #! show four complete meshes in the window
|
494 |
+
self._light.position = [0.0, 0.0, scale]
|
495 |
+
|
496 |
+
state = embed.dependency_state(self._renderer)
|
497 |
+
|
498 |
+
# Somehow these entries are missing when the state is exported in python.
|
499 |
+
# Exporting from the GUI works, so we are inserting the missing entries.
|
500 |
+
for k in state:
|
501 |
+
if state[k]["model_name"] == "OrbitControlsModel":
|
502 |
+
state[k]["state"]["maxAzimuthAngle"] = "inf"
|
503 |
+
state[k]["state"]["maxDistance"] = "inf"
|
504 |
+
state[k]["state"]["maxZoom"] = "inf"
|
505 |
+
state[k]["state"]["minAzimuthAngle"] = "-inf"
|
506 |
+
|
507 |
+
tpl = embed.load_requirejs_template
|
508 |
+
if not imports:
|
509 |
+
embed.load_requirejs_template = ""
|
510 |
+
|
511 |
+
s = embed.embed_snippet(self._renderer, state=state, embed_url=EMBED_URL)
|
512 |
+
# s = embed.embed_snippet(self.__w, state=state)
|
513 |
+
embed.load_requirejs_template = tpl
|
514 |
+
|
515 |
+
if html_frame:
|
516 |
+
s = "<html>\n<body>\n" + s + "\n</body>\n</html>"
|
517 |
+
|
518 |
+
# Revert changes
|
519 |
+
for r, obj in enumerate(self.__objects):
|
520 |
+
v = self.__objects[obj]["geometry"].attributes["position"].array
|
521 |
+
v += mean
|
522 |
+
self.__update_view()
|
523 |
+
|
524 |
+
return s
|
525 |
+
|
526 |
+
def save(self, filename=""):
|
527 |
+
if filename == "":
|
528 |
+
uid = str(uuid.uuid4()) + ".html"
|
529 |
+
else:
|
530 |
+
filename = filename.replace(".html", "")
|
531 |
+
uid = filename + '.html'
|
532 |
+
with open(uid, "w") as f:
|
533 |
+
f.write(self.to_html())
|
534 |
+
print("Plot saved to file %s." % uid)
|
MeshAnything/miche/shapevae-256.yaml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: MeshAnything.miche.michelangelo.models.tsal.asl_pl_module.AlignedShapeAsLatentPLModule
|
3 |
+
params:
|
4 |
+
shape_module_cfg:
|
5 |
+
target: MeshAnything.miche.michelangelo.models.tsal.sal_perceiver.AlignedShapeLatentPerceiver
|
6 |
+
params:
|
7 |
+
num_latents: 256
|
8 |
+
embed_dim: 64
|
9 |
+
point_feats: 3 # normal
|
10 |
+
num_freqs: 8
|
11 |
+
include_pi: false
|
12 |
+
heads: 12
|
13 |
+
width: 768
|
14 |
+
num_encoder_layers: 8
|
15 |
+
num_decoder_layers: 16
|
16 |
+
use_ln_post: true
|
17 |
+
init_scale: 0.25
|
18 |
+
qkv_bias: false
|
19 |
+
use_checkpoint: true
|
20 |
+
aligned_module_cfg:
|
21 |
+
target: MeshAnything.miche.michelangelo.models.tsal.clip_asl_module.CLIPAlignedShapeAsLatentModule
|
22 |
+
params:
|
23 |
+
clip_model_version: "./checkpoints/clip/clip-vit-large-patch14"
|
24 |
+
|
25 |
+
loss_cfg:
|
26 |
+
target: MeshAnything.miche.michelangelo.models.tsal.loss.ContrastKLNearFar
|
27 |
+
params:
|
28 |
+
contrast_weight: 0.1
|
29 |
+
near_weight: 0.1
|
30 |
+
kl_weight: 0.001
|
31 |
+
|
32 |
+
optimizer_cfg:
|
33 |
+
optimizer:
|
34 |
+
target: torch.optim.AdamW
|
35 |
+
params:
|
36 |
+
betas: [0.9, 0.99]
|
37 |
+
eps: 1.e-6
|
38 |
+
weight_decay: 1.e-2
|
39 |
+
|
40 |
+
scheduler:
|
41 |
+
target: MeshAnything.miche.michelangelo.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
|
42 |
+
params:
|
43 |
+
warm_up_steps: 5000
|
44 |
+
f_start: 1.e-6
|
45 |
+
f_min: 1.e-3
|
46 |
+
f_max: 1.0
|
MeshAnything/models/meshanything.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn, Tensor
|
3 |
+
from transformers import AutoModelForCausalLM, AutoConfig, AutoModel
|
4 |
+
from MeshAnything.miche.encode import load_model
|
5 |
+
from MeshAnything.models.shape_opt import ShapeOPTConfig
|
6 |
+
from einops.layers.torch import Rearrange
|
7 |
+
from einops import rearrange, repeat, reduce, pack, unpack
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
class NoiseResistantDecoder(nn.Module):
|
11 |
+
|
12 |
+
def __init__(self, args):
|
13 |
+
super().__init__()
|
14 |
+
self.args = args
|
15 |
+
self.pad_id = -1
|
16 |
+
self.num_quantizers = 3
|
17 |
+
|
18 |
+
self.discrete_num = 128
|
19 |
+
self.codebook_size = args.codebook_size
|
20 |
+
self.codebook_dim = args.codebook_dim
|
21 |
+
|
22 |
+
config = AutoConfig.from_pretrained("bert-base-uncased")
|
23 |
+
config.num_hidden_layers = 6
|
24 |
+
self.decoder= AutoModel.from_config(config=config).to_bettertransformer().encoder
|
25 |
+
self.n_embd = self.decoder.config.hidden_size
|
26 |
+
|
27 |
+
self.pos_embedding = nn.Embedding(18000, self.n_embd)
|
28 |
+
self.layernorm = nn.LayerNorm(self.n_embd)
|
29 |
+
self.point_layernorm = nn.LayerNorm(self.n_embd)
|
30 |
+
|
31 |
+
self.cond_length = 257
|
32 |
+
self.cond_dim = 768
|
33 |
+
self.point_pe = nn.Embedding(self.cond_length, self.n_embd)
|
34 |
+
self.cond_proj = nn.Linear(self.cond_dim, self.n_embd)
|
35 |
+
self.cond_head_proj = nn.Linear(self.cond_dim, self.n_embd)
|
36 |
+
|
37 |
+
self.project_down_codebook = nn.Linear(self.codebook_dim * 3, self.n_embd)
|
38 |
+
self.to_coor_logits = nn.Sequential(
|
39 |
+
nn.Linear(self.n_embd, self.discrete_num * 9),
|
40 |
+
Rearrange('... (v c) -> ... v c', v = 9)
|
41 |
+
)
|
42 |
+
def process_point_feature(self, encode_feature):
|
43 |
+
point_feature = torch.zeros(encode_feature.shape[0], self.cond_length, self.n_embd, device=self.cond_head_proj.weight.device, dtype=self.cond_head_proj.weight.dtype)
|
44 |
+
point_feature[:, 0] = self.cond_head_proj(encode_feature[:, 0])
|
45 |
+
point_feature[:, 1:] = self.cond_proj(encode_feature[:, 1:])
|
46 |
+
|
47 |
+
point_feature = self.point_layernorm(point_feature + self.point_pe.weight[None, :point_feature.shape[1]])
|
48 |
+
return point_feature
|
49 |
+
|
50 |
+
def forward(self, input_ids, input_embeds, point_feature = None):
|
51 |
+
input_ids = input_ids.reshape(input_ids.shape[0], -1)
|
52 |
+
point_feature = self.process_point_feature(point_feature)
|
53 |
+
|
54 |
+
face_embeds = rearrange(input_embeds, 'b (nf nv) d -> b nf (nv d)', nv = 3)
|
55 |
+
face_embeds = self.project_down_codebook(face_embeds)
|
56 |
+
|
57 |
+
face_mask = reduce(input_ids != self.pad_id, 'b (nf nv q) -> b nf', 'all', nv = 3, q = self.num_quantizers)
|
58 |
+
face_embeds[~face_mask] = 0
|
59 |
+
|
60 |
+
face_embeds = self.layernorm(face_embeds + self.pos_embedding.weight[None, :face_embeds.shape[1]])
|
61 |
+
|
62 |
+
outputs = self.decoder(
|
63 |
+
hidden_states=torch.concatenate([point_feature, face_embeds], dim=1),
|
64 |
+
)
|
65 |
+
decoded = outputs.last_hidden_state[:, self.cond_length:] # batch x nfaces x dim
|
66 |
+
decoded = decoded.masked_fill(~face_mask.unsqueeze(-1), 0.)
|
67 |
+
|
68 |
+
# batch x nfaces x 9 -> batch x nfaces x 3 x 3
|
69 |
+
pred_face_logits = self.to_coor_logits(decoded) # batch x nfaces x 9 x ndiscrete
|
70 |
+
pred_face_coords = rearrange(pred_face_logits.argmax(dim = -1), '... (v c) -> ... v c', v = 3)
|
71 |
+
|
72 |
+
continuous_coors = undiscretize(
|
73 |
+
pred_face_coords,
|
74 |
+
num_discrete = self.discrete_num,
|
75 |
+
low = -0.5,
|
76 |
+
high = 0.5
|
77 |
+
)
|
78 |
+
continuous_coors = continuous_coors.masked_fill(~rearrange(face_mask, 'b nf -> b nf 1 1'), float('nan'))
|
79 |
+
|
80 |
+
return continuous_coors
|
81 |
+
|
82 |
+
class MeshAnything(nn.Module):
|
83 |
+
def __init__(self, args):
|
84 |
+
super().__init__()
|
85 |
+
self.args = args
|
86 |
+
self.point_encoder = load_model(ckpt_path=None)
|
87 |
+
self.tokenizer = NoiseResistantDecoder(args)
|
88 |
+
|
89 |
+
self.num_quantizers = 3
|
90 |
+
self.face_per_token = self.num_quantizers * 3
|
91 |
+
self.cond_length = 257
|
92 |
+
self.cond_dim = 768
|
93 |
+
self.max_length = args.n_max_triangles * self.face_per_token + 2 + self.cond_length
|
94 |
+
|
95 |
+
self.config = ShapeOPTConfig.from_pretrained(
|
96 |
+
args.llm,
|
97 |
+
n_positions=18259,
|
98 |
+
max_position_embeddings=18259,
|
99 |
+
vocab_size=self.tokenizer.codebook_size + 3,
|
100 |
+
_attn_implementation="flash_attention_2"
|
101 |
+
)
|
102 |
+
self.bos_token_id = 0
|
103 |
+
self.eos_token_id = 1
|
104 |
+
self.pad_token_id = 2
|
105 |
+
self.config.bos_token_id = self.bos_token_id
|
106 |
+
self.config.eos_token_id = self.eos_token_id
|
107 |
+
self.config.pad_token_id = self.pad_token_id
|
108 |
+
self.config.quantize_codebook_dim = self.tokenizer.codebook_dim
|
109 |
+
self.config.face_per_token = self.face_per_token
|
110 |
+
self.config._attn_implementation="flash_attention_2"
|
111 |
+
self.config.cond_length = self.cond_length
|
112 |
+
if self.config.word_embed_proj_dim != self.config.hidden_size:
|
113 |
+
self.config.word_embed_proj_dim = self.config.hidden_size
|
114 |
+
self.transformer = AutoModelForCausalLM.from_config(
|
115 |
+
config=self.config, use_flash_attention_2 = True
|
116 |
+
)
|
117 |
+
self.transformer.to_bettertransformer()
|
118 |
+
self.transformer.model.decoder.quantize_codebooks = nn.Parameter(torch.zeros(1, self.tokenizer.codebook_size, self.tokenizer.codebook_dim))
|
119 |
+
|
120 |
+
self.cond_head_proj = nn.Linear(self.cond_dim, self.config.word_embed_proj_dim)
|
121 |
+
self.cond_proj = nn.Linear(self.cond_dim * 2, self.config.word_embed_proj_dim)
|
122 |
+
|
123 |
+
self.eval()
|
124 |
+
|
125 |
+
def process_point_feature(self, point_feature):
|
126 |
+
encode_feature = torch.zeros(point_feature.shape[0], self.cond_length, self.config.word_embed_proj_dim,
|
127 |
+
device=self.cond_head_proj.weight.device, dtype=self.cond_head_proj.weight.dtype)
|
128 |
+
encode_feature[:, 0] = self.cond_head_proj(point_feature[:, 0])
|
129 |
+
shape_latents = self.point_encoder.to_shape_latents(point_feature[:, 1:])
|
130 |
+
encode_feature[:, 1:] = self.cond_proj(torch.cat([point_feature[:, 1:], shape_latents], dim=-1))
|
131 |
+
|
132 |
+
return encode_feature
|
133 |
+
|
134 |
+
@torch.no_grad()
|
135 |
+
def forward(self, pc_normal, sampling=False) -> dict:
|
136 |
+
batch_size = pc_normal.shape[0]
|
137 |
+
point_feature = self.point_encoder.encode_latents(pc_normal)
|
138 |
+
processed_point_feature = self.process_point_feature(point_feature)
|
139 |
+
|
140 |
+
generate_length = self.max_length - self.cond_length
|
141 |
+
net_device = next(self.parameters()).device
|
142 |
+
outputs = torch.ones(batch_size, generate_length).long().to(net_device) * self.eos_token_id
|
143 |
+
if not sampling:
|
144 |
+
results = self.transformer.generate(
|
145 |
+
inputs_embeds=processed_point_feature,
|
146 |
+
max_new_tokens=generate_length, # all faces plus two
|
147 |
+
num_beams=1,
|
148 |
+
bos_token_id=self.bos_token_id,
|
149 |
+
eos_token_id=self.eos_token_id,
|
150 |
+
pad_token_id=self.pad_token_id,
|
151 |
+
)
|
152 |
+
else:
|
153 |
+
results = self.transformer.generate(
|
154 |
+
inputs_embeds = processed_point_feature,
|
155 |
+
max_new_tokens=generate_length, # all faces plus two
|
156 |
+
do_sample=True,
|
157 |
+
top_k=50,
|
158 |
+
top_p=0.95,
|
159 |
+
bos_token_id = self.bos_token_id,
|
160 |
+
eos_token_id = self.eos_token_id,
|
161 |
+
pad_token_id = self.pad_token_id,
|
162 |
+
)
|
163 |
+
assert results.shape[1] <= generate_length # B x ID bos is not included since it's predicted
|
164 |
+
outputs[:, :results.shape[1]] = results
|
165 |
+
# batch x ntokens ====> batch x ntokens x D
|
166 |
+
outputs = outputs[:, 1: -1]
|
167 |
+
|
168 |
+
outputs[outputs == self.bos_token_id] = self.tokenizer.pad_id
|
169 |
+
outputs[outputs == self.eos_token_id] = self.tokenizer.pad_id
|
170 |
+
outputs[outputs == self.pad_token_id] = self.tokenizer.pad_id
|
171 |
+
|
172 |
+
outputs[outputs != self.tokenizer.pad_id] -= 3
|
173 |
+
code_embed = self.get_codes(outputs)
|
174 |
+
decoder_output = self.tokenizer(outputs, code_embed, point_feature=point_feature)
|
175 |
+
|
176 |
+
return decoder_output
|
177 |
+
|
178 |
+
def get_codes(self, indices):
|
179 |
+
indices = indices.reshape(indices.shape[0], -1)
|
180 |
+
|
181 |
+
indices = rearrange(indices, 'b (n q) -> b n q', q=self.num_quantizers)
|
182 |
+
|
183 |
+
batch, quantize_dim = indices.shape[0], indices.shape[-1]
|
184 |
+
# may also receive indices in the shape of 'b h w q' (accept_image_fmap)
|
185 |
+
|
186 |
+
indices, ps = pack([indices], 'b * q')
|
187 |
+
|
188 |
+
# because of quantize dropout, one can pass in indices that are coarse
|
189 |
+
# and the network should be able to reconstruct
|
190 |
+
|
191 |
+
if quantize_dim < self.num_quantizers:
|
192 |
+
indices = F.pad(indices, (0, self.num_quantizers - quantize_dim), value = -1)
|
193 |
+
|
194 |
+
# take care of quantizer dropout
|
195 |
+
|
196 |
+
mask = indices == -1.
|
197 |
+
indices = indices.masked_fill(mask, 0) # have it fetch a dummy code to be masked out later
|
198 |
+
|
199 |
+
# dummy implementation for shared codebook
|
200 |
+
all_codes = self.transformer.model.decoder.quantize_codebooks[0][indices]
|
201 |
+
all_codes = all_codes.permute(2, 0, 1, 3)
|
202 |
+
|
203 |
+
# mask out any codes that were dropout-ed
|
204 |
+
|
205 |
+
all_codes = all_codes.masked_fill(rearrange(mask, 'b n q -> q b n 1'), 0.)
|
206 |
+
|
207 |
+
# if (accept_image_fmap = True) then return shape (quantize, batch, height, width, dimension)
|
208 |
+
|
209 |
+
codes, = unpack(all_codes, ps, 'q b * d')
|
210 |
+
|
211 |
+
codes_summed = reduce(codes, 'q ... -> ...', 'sum')
|
212 |
+
return codes_summed
|
213 |
+
|
214 |
+
def undiscretize(
|
215 |
+
t,
|
216 |
+
low,
|
217 |
+
high,
|
218 |
+
num_discrete
|
219 |
+
) -> Tensor:
|
220 |
+
t = t.float()
|
221 |
+
|
222 |
+
t /= num_discrete
|
223 |
+
return t * (high - low) + low
|
MeshAnything/models/shape_opt.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoConfig, OPTConfig
|
2 |
+
from transformers.models.opt.modeling_opt import OPTForCausalLM, OPTModel, OPTDecoder, OPTLearnedPositionalEmbedding, OPTDecoderLayer
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
+
from einops import repeat
|
5 |
+
from transformers.modeling_outputs import (
|
6 |
+
CausalLMOutputWithPast,
|
7 |
+
)
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import CrossEntropyLoss
|
11 |
+
from transformers.utils import replace_return_docstrings, logging
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
13 |
+
# from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
14 |
+
|
15 |
+
class ShapeOPTConfig(OPTConfig):
|
16 |
+
model_type = "shape_opt"
|
17 |
+
|
18 |
+
class ShapeOPT(OPTForCausalLM):
|
19 |
+
config_class = ShapeOPTConfig
|
20 |
+
def __init__(self, config: ShapeOPTConfig):
|
21 |
+
super(OPTForCausalLM, self).__init__(config)
|
22 |
+
self.model = ShapeOPTModel(config)
|
23 |
+
|
24 |
+
self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
|
25 |
+
|
26 |
+
# Initialize weights and apply final processing
|
27 |
+
self.post_init()
|
28 |
+
|
29 |
+
def tie_weights(self):
|
30 |
+
"""
|
31 |
+
Tie the weights between the input embeddings and the output embeddings.
|
32 |
+
|
33 |
+
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
|
34 |
+
weights instead.
|
35 |
+
"""
|
36 |
+
if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
|
37 |
+
if hasattr(self, self.base_model_prefix):
|
38 |
+
self = getattr(self, self.base_model_prefix)
|
39 |
+
self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)
|
40 |
+
|
41 |
+
for module in self.modules():
|
42 |
+
if hasattr(module, "_tie_weights"):
|
43 |
+
module._tie_weights()
|
44 |
+
|
45 |
+
|
46 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="OPTConfig")
|
47 |
+
def forward(
|
48 |
+
self,
|
49 |
+
input_ids: torch.LongTensor = None,
|
50 |
+
face_ids: torch.LongTensor = None,
|
51 |
+
attention_mask: Optional[torch.Tensor] = None,
|
52 |
+
head_mask: Optional[torch.Tensor] = None,
|
53 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
54 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
55 |
+
labels: Optional[torch.LongTensor] = None,
|
56 |
+
use_cache: Optional[bool] = None,
|
57 |
+
output_attentions: Optional[bool] = None,
|
58 |
+
output_hidden_states: Optional[bool] = None,
|
59 |
+
return_dict: Optional[bool] = None,
|
60 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
61 |
+
r"""
|
62 |
+
Args:
|
63 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
64 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
65 |
+
provide it.
|
66 |
+
|
67 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
68 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
69 |
+
|
70 |
+
[What are input IDs?](../glossary#input-ids)
|
71 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
72 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
73 |
+
|
74 |
+
- 1 for tokens that are **not masked**,
|
75 |
+
- 0 for tokens that are **masked**.
|
76 |
+
|
77 |
+
[What are attention masks?](../glossary#attention-mask)
|
78 |
+
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
|
79 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
80 |
+
|
81 |
+
- 1 indicates the head is **not masked**,
|
82 |
+
- 0 indicates the head is **masked**.
|
83 |
+
|
84 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
85 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
86 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
87 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
|
88 |
+
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
|
89 |
+
|
90 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
91 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
92 |
+
|
93 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
94 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
95 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
96 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
97 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
98 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
99 |
+
than the model's internal embedding lookup matrix.
|
100 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
101 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
102 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
103 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
104 |
+
use_cache (`bool`, *optional*):
|
105 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
106 |
+
(see `past_key_values`).
|
107 |
+
output_attentions (`bool`, *optional*):
|
108 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
109 |
+
returned tensors for more detail.
|
110 |
+
output_hidden_states (`bool`, *optional*):
|
111 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
112 |
+
for more detail.
|
113 |
+
return_dict (`bool`, *optional*):
|
114 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
|
118 |
+
Example:
|
119 |
+
|
120 |
+
```python
|
121 |
+
>>> from transformers import AutoTokenizer, OPTForCausalLM
|
122 |
+
|
123 |
+
>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
|
124 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
125 |
+
|
126 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
127 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
128 |
+
|
129 |
+
>>> # Generate
|
130 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
131 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
132 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
|
133 |
+
```"""
|
134 |
+
|
135 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
136 |
+
output_hidden_states = (
|
137 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
138 |
+
)
|
139 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
140 |
+
|
141 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
142 |
+
outputs = self.model.decoder(
|
143 |
+
input_ids=input_ids,
|
144 |
+
face_ids = face_ids,
|
145 |
+
attention_mask=attention_mask,
|
146 |
+
head_mask=head_mask,
|
147 |
+
past_key_values=past_key_values,
|
148 |
+
inputs_embeds=inputs_embeds,
|
149 |
+
use_cache=use_cache,
|
150 |
+
output_attentions=output_attentions,
|
151 |
+
output_hidden_states=output_hidden_states,
|
152 |
+
return_dict=return_dict,
|
153 |
+
)
|
154 |
+
|
155 |
+
logits = self.lm_head(outputs[0]).contiguous()
|
156 |
+
|
157 |
+
loss = None
|
158 |
+
if labels is not None:
|
159 |
+
# move labels to correct device to enable model parallelism
|
160 |
+
labels = labels.to(logits.device)
|
161 |
+
# Shift so that tokens < n predict n
|
162 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
163 |
+
shift_labels = labels[..., 1:].contiguous()
|
164 |
+
# Flatten the tokens
|
165 |
+
loss_fct = CrossEntropyLoss()
|
166 |
+
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
167 |
+
|
168 |
+
if not return_dict:
|
169 |
+
output = (logits,) + outputs[1:]
|
170 |
+
return (loss,) + output if loss is not None else output
|
171 |
+
|
172 |
+
return CausalLMOutputWithPast(
|
173 |
+
loss=loss,
|
174 |
+
logits=logits,
|
175 |
+
past_key_values=outputs.past_key_values,
|
176 |
+
hidden_states=outputs.hidden_states,
|
177 |
+
attentions=outputs.attentions,
|
178 |
+
)
|
179 |
+
|
180 |
+
class ShapeOPTModel(OPTModel):
|
181 |
+
config_class = ShapeOPTConfig
|
182 |
+
def __init__(self, config: ShapeOPTConfig):
|
183 |
+
super(OPTModel,self).__init__(config)
|
184 |
+
self.decoder = ShapeOPTDecoder(config)
|
185 |
+
# Initialize weights and apply final processing
|
186 |
+
self.post_init()
|
187 |
+
|
188 |
+
class ShapeOPTDecoder(OPTDecoder):
|
189 |
+
config_class = ShapeOPTConfig
|
190 |
+
def __init__(self, config: ShapeOPTConfig):
|
191 |
+
super(OPTDecoder,self).__init__(config)
|
192 |
+
self.config = config
|
193 |
+
self.dropout = config.dropout
|
194 |
+
self.layerdrop = config.layerdrop
|
195 |
+
self.padding_idx = config.pad_token_id
|
196 |
+
self.max_target_positions = config.max_position_embeddings
|
197 |
+
self.vocab_size = config.vocab_size
|
198 |
+
|
199 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx) # not used
|
200 |
+
self.hidden_size = config.hidden_size
|
201 |
+
self.word_embed_proj_dim = config.word_embed_proj_dim
|
202 |
+
self.extra_embeds = nn.Embedding(3, config.word_embed_proj_dim) #padding_idx=self.padding_idx)
|
203 |
+
self.input_layer = nn.Linear(config.quantize_codebook_dim, config.word_embed_proj_dim)
|
204 |
+
|
205 |
+
self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
|
206 |
+
self.token_embed_positions = OPTFacePositionalEmbedding(config.face_per_token + 3, config.word_embed_proj_dim) #padding_idx=self.padding_idx)
|
207 |
+
self.face_per_token = config.face_per_token
|
208 |
+
self.cond_length = config.cond_length
|
209 |
+
self.cond_embed = nn.Embedding(2, config.word_embed_proj_dim)
|
210 |
+
|
211 |
+
if config.word_embed_proj_dim != config.hidden_size:
|
212 |
+
self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
|
213 |
+
else:
|
214 |
+
self.project_out = None
|
215 |
+
|
216 |
+
if config.word_embed_proj_dim != config.hidden_size:
|
217 |
+
self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
|
218 |
+
else:
|
219 |
+
self.project_in = None
|
220 |
+
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
|
221 |
+
# with checkpoints that have been fine-tuned before transformers v4.20.1
|
222 |
+
# see https://github.com/facebookresearch/metaseq/pull/164
|
223 |
+
if config.do_layer_norm_before and not config._remove_final_layer_norm:
|
224 |
+
self.final_layer_norm = nn.LayerNorm(
|
225 |
+
config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
|
226 |
+
)
|
227 |
+
else:
|
228 |
+
self.final_layer_norm = None
|
229 |
+
|
230 |
+
self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
231 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
232 |
+
|
233 |
+
self.gradient_checkpointing = False
|
234 |
+
# Initialize weights and apply final processing
|
235 |
+
self.post_init()
|
236 |
+
|
237 |
+
def embed_with_vae(self, input_ids):
|
238 |
+
inputs_embeds = repeat(torch.zeros(input_ids.shape, device=input_ids.device), 'b n -> b n d',
|
239 |
+
d=self.word_embed_proj_dim).clone().detach()
|
240 |
+
idx_in_extra = torch.isin(input_ids, torch.LongTensor([0, 1, 2]).to(input_ids.device))
|
241 |
+
inputs_embeds[idx_in_extra] += self.extra_embeds(input_ids[idx_in_extra])
|
242 |
+
self.quantize_codebooks = self.quantize_codebooks.to(input_ids.device)
|
243 |
+
inputs_embeds[~idx_in_extra] += self.input_layer(self.quantize_codebooks[0][input_ids[~idx_in_extra] - 3])
|
244 |
+
|
245 |
+
return inputs_embeds
|
246 |
+
|
247 |
+
|
248 |
+
def forward(
|
249 |
+
self,
|
250 |
+
input_ids: torch.LongTensor = None,
|
251 |
+
face_ids: torch.LongTensor = None,
|
252 |
+
attention_mask: Optional[torch.Tensor] = None,
|
253 |
+
head_mask: Optional[torch.Tensor] = None,
|
254 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
255 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
256 |
+
use_cache: Optional[bool] = None,
|
257 |
+
output_attentions: Optional[bool] = None,
|
258 |
+
output_hidden_states: Optional[bool] = None,
|
259 |
+
return_dict: Optional[bool] = None,
|
260 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
261 |
+
r"""
|
262 |
+
Args:
|
263 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
264 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
265 |
+
provide it.
|
266 |
+
|
267 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
268 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
269 |
+
|
270 |
+
[What are input IDs?](../glossary#input-ids)
|
271 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
272 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
273 |
+
|
274 |
+
- 1 for tokens that are **not masked**,
|
275 |
+
- 0 for tokens that are **masked**.
|
276 |
+
|
277 |
+
[What are attention masks?](../glossary#attention-mask)
|
278 |
+
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
|
279 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
280 |
+
|
281 |
+
- 1 indicates the head is **not masked**,
|
282 |
+
- 0 indicates the head is **masked**.
|
283 |
+
|
284 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
285 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
286 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
287 |
+
|
288 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
289 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
290 |
+
|
291 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
292 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
293 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
294 |
+
|
295 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
296 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
297 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
298 |
+
than the model's internal embedding lookup matrix.
|
299 |
+
output_attentions (`bool`, *optional*):
|
300 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
301 |
+
returned tensors for more detail.
|
302 |
+
output_hidden_states (`bool`, *optional*):
|
303 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
304 |
+
for more detail.
|
305 |
+
return_dict (`bool`, *optional*):
|
306 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
307 |
+
"""
|
308 |
+
# OPT Decoder
|
309 |
+
# print("used my Trans")
|
310 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
311 |
+
output_hidden_states = (
|
312 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
313 |
+
)
|
314 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
315 |
+
|
316 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
317 |
+
# Transformer Decoder
|
318 |
+
if input_ids is not None:
|
319 |
+
input_shape = input_ids.size()
|
320 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
321 |
+
inputs_embeds = self.embed_with_vae(input_ids) # nothing to do with position
|
322 |
+
|
323 |
+
face_embeds = self.token_embed_positions(attention_mask[:, self.cond_length:], face_ids, input_ids,
|
324 |
+
self.face_per_token)
|
325 |
+
inputs_embeds += face_embeds
|
326 |
+
cond_embed_query = torch.ones((inputs_embeds.shape[0], inputs_embeds.shape[1]), device=inputs_embeds.device,
|
327 |
+
dtype=inputs_embeds.dtype).long()
|
328 |
+
inputs_embeds = inputs_embeds + self.cond_embed(cond_embed_query)
|
329 |
+
|
330 |
+
elif inputs_embeds is not None:
|
331 |
+
# assert self.cond and not self.training
|
332 |
+
|
333 |
+
total_length = inputs_embeds.shape[1] # B x length x embeding
|
334 |
+
cond_embed_query = torch.zeros((inputs_embeds.shape[0], total_length), device=inputs_embeds.device,
|
335 |
+
dtype=inputs_embeds.dtype).long()
|
336 |
+
inputs_embeds = inputs_embeds + self.cond_embed(cond_embed_query)
|
337 |
+
else:
|
338 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
339 |
+
|
340 |
+
batch_size, seq_length = inputs_embeds.shape[:2] # seq_length not used since mask_seq_length is not used
|
341 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
342 |
+
# required mask seq length can be calculated via length of past
|
343 |
+
mask_seq_length = past_key_values_length + seq_length # not used since attention mask is input
|
344 |
+
|
345 |
+
# embed positions
|
346 |
+
if self._use_flash_attention_2:
|
347 |
+
# 2d mask is passed through the layers
|
348 |
+
assert attention_mask is not None
|
349 |
+
causal_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
350 |
+
attention_mask = (
|
351 |
+
torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
|
352 |
+
if attention_mask is None
|
353 |
+
else attention_mask
|
354 |
+
)
|
355 |
+
else:
|
356 |
+
raise ValueError("Only flash_attention_2 is supported in MeshAnything")
|
357 |
+
|
358 |
+
pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
|
359 |
+
|
360 |
+
if self.project_in is not None:
|
361 |
+
inputs_embeds = self.project_in(inputs_embeds)
|
362 |
+
|
363 |
+
hidden_states = inputs_embeds + pos_embeds
|
364 |
+
|
365 |
+
# decoder layers
|
366 |
+
all_hidden_states = () if output_hidden_states else None
|
367 |
+
all_self_attns = () if output_attentions else None
|
368 |
+
next_decoder_cache = () if use_cache else None
|
369 |
+
|
370 |
+
# check if head_mask has a correct number of layers specified if desired
|
371 |
+
for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
|
372 |
+
if attn_mask is not None:
|
373 |
+
if attn_mask.size()[0] != (len(self.layers)):
|
374 |
+
raise ValueError(
|
375 |
+
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
376 |
+
f" {head_mask.size()[0]}."
|
377 |
+
)
|
378 |
+
|
379 |
+
for idx, decoder_layer in enumerate(self.layers):
|
380 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
381 |
+
if output_hidden_states:
|
382 |
+
all_hidden_states += (hidden_states,)
|
383 |
+
|
384 |
+
if self.training:
|
385 |
+
dropout_probability = torch.rand([])
|
386 |
+
if dropout_probability < self.layerdrop:
|
387 |
+
continue
|
388 |
+
|
389 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
390 |
+
|
391 |
+
if self.gradient_checkpointing and self.training:
|
392 |
+
layer_outputs = self._gradient_checkpointing_func(
|
393 |
+
decoder_layer.__call__,
|
394 |
+
hidden_states,
|
395 |
+
causal_attention_mask,
|
396 |
+
head_mask[idx] if head_mask is not None else None,
|
397 |
+
None,
|
398 |
+
output_attentions,
|
399 |
+
use_cache,
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
layer_outputs = decoder_layer(
|
403 |
+
hidden_states,
|
404 |
+
attention_mask=causal_attention_mask,
|
405 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
406 |
+
past_key_value=past_key_value,
|
407 |
+
output_attentions=output_attentions,
|
408 |
+
use_cache=use_cache,
|
409 |
+
)
|
410 |
+
|
411 |
+
hidden_states = layer_outputs[0]
|
412 |
+
|
413 |
+
if use_cache:
|
414 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
415 |
+
|
416 |
+
if output_attentions:
|
417 |
+
all_self_attns += (layer_outputs[1],)
|
418 |
+
|
419 |
+
if self.final_layer_norm is not None:
|
420 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
421 |
+
|
422 |
+
if self.project_out is not None:
|
423 |
+
hidden_states = self.project_out(hidden_states)
|
424 |
+
|
425 |
+
# add hidden states from the last decoder layer
|
426 |
+
if output_hidden_states:
|
427 |
+
all_hidden_states += (hidden_states,)
|
428 |
+
|
429 |
+
next_cache = next_decoder_cache if use_cache else None
|
430 |
+
if not return_dict:
|
431 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
432 |
+
return BaseModelOutputWithPast(
|
433 |
+
last_hidden_state=hidden_states,
|
434 |
+
past_key_values=next_cache,
|
435 |
+
hidden_states=all_hidden_states,
|
436 |
+
attentions=all_self_attns,
|
437 |
+
)
|
438 |
+
|
439 |
+
class OPTFacePositionalEmbedding(nn.Embedding):
|
440 |
+
"""
|
441 |
+
This module learns positional embeddings up to a fixed maximum size.
|
442 |
+
"""
|
443 |
+
|
444 |
+
def __init__(self, num_embeddings: int, embedding_dim: int):
|
445 |
+
super().__init__(num_embeddings, embedding_dim)
|
446 |
+
|
447 |
+
def forward(self, attention_mask=None, face_ids = None, input_ids = None, face_per_token = None):
|
448 |
+
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
|
449 |
+
if face_ids is not None:
|
450 |
+
return super().forward(face_ids)
|
451 |
+
|
452 |
+
assert input_ids.shape[1] == 1
|
453 |
+
idx_in_extra = torch.isin(input_ids, torch.LongTensor([0, 1, 2]).to(input_ids.device))
|
454 |
+
cur_ids = input_ids.clone().detach()
|
455 |
+
|
456 |
+
cur_index = (attention_mask.sum(dim=1, keepdim=True) - 2) % face_per_token + 3
|
457 |
+
cur_ids[~idx_in_extra]=cur_index[~idx_in_extra]
|
458 |
+
|
459 |
+
return super().forward(cur_ids)
|
460 |
+
|
461 |
+
|
462 |
+
AutoConfig.register("shape_opt", ShapeOPTConfig)
|
463 |
+
AutoModelForCausalLM.register(ShapeOPTConfig, ShapeOPT)
|
464 |
+
|