import spaces import gradio as gr from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info import torch import os import json os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-7B-Instruct", torch_dtype=torch.bfloat16, # attn_implementation="flash_attention_2", device_map="auto", ) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") from pydantic import BaseModel from typing import Tuple class GeneralRetrievalQuery(BaseModel): broad_topical_query: str broad_topical_explanation: str specific_detail_query: str specific_detail_explanation: str visual_element_query: str visual_element_explanation: str def get_retrieval_prompt(prompt_name: str) -> Tuple[str, GeneralRetrievalQuery]: if prompt_name != "general": raise ValueError("Only 'general' prompt is available in this version") prompt = """You are an AI assistant specialized in document retrieval tasks. Given an image of a document page, your task is to generate retrieval queries that someone might use to find this document in a large corpus. Please generate 3 different types of retrieval queries: 1. A broad topical query: This should cover the main subject of the document. 2. A specific detail query: This should focus on a particular fact, figure, or point made in the document. 3. A visual element query: This should reference a chart, graph, image, or other visual component in the document, if present. Important guidelines: - Ensure the queries are relevant for retrieval tasks, not just describing the page content. - Frame the queries as if someone is searching for this document, not asking questions about its content. - Make the queries diverse and representative of different search strategies. For each query, also provide a brief explanation of why this query would be effective in retrieving this document. Format your response as a JSON object with the following structure: { "broad_topical_query": "Your query here", "broad_topical_explanation": "Brief explanation", "specific_detail_query": "Your query here", "specific_detail_explanation": "Brief explanation", "visual_element_query": "Your query here", "visual_element_explanation": "Brief explanation" } If there are no relevant visual elements, replace the third query with another specific detail query. Here is the document image to analyze: Generate the queries based on this image and provide the response in the specified JSON format.""" return prompt, GeneralRetrievalQuery prompt, pydantic_model = get_retrieval_prompt("general") @spaces.GPU def generate_response(image): messages = [ { "role": "user", "content": [ { "type": "image", "image": image, }, {"type": "text", "text": prompt}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=200) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False, ) try: data = json.loads(output_text[0]) return data except Exception: return {} demo = gr.Interface(fn=generate_response, inputs=gr.Image(type='pil'), outputs="json") demo.launch()