datascientist22 commited on
Commit
2e84c90
1 Parent(s): 249d7ba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -0
README.md CHANGED
@@ -10,3 +10,55 @@ pinned: false
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
+ # PDF Query Chatbot
14
+
15
+ ![PDF Query Chatbot](https://huggingface.co/datasets/datascientist22/pdf-query-chatbot/preview)
16
+
17
+ ## Overview
18
+
19
+ The **PDF Query Chatbot** is a Streamlit-based application hosted on Hugging Face Spaces. It allows users to upload a PDF document and ask questions about its content. The chatbot utilizes a transformer model to generate responses based on the text extracted from the PDF.
20
+
21
+ ## Live Demo
22
+
23
+ You can try the PDF Query Chatbot live here: [PDF Query Chatbot on Hugging Face Spaces](https://huggingface.co/spaces/datascientist22/rag-pdfQA-chatbot)
24
+
25
+ ## Features
26
+
27
+ - **Upload PDF Files**: Upload PDF files directly from your local machine.
28
+ - **Query Input**: Enter questions related to the uploaded PDF content.
29
+ - **Text Extraction**: Extracts text from the PDF for querying.
30
+ - **Response Generation**: Uses a transformer model to generate answers based on your query and the PDF content.
31
+
32
+ ## How to Use
33
+
34
+ 1. **Upload PDF File**: Use the sidebar to upload a PDF file.
35
+ 2. **Enter Query**: Type your question related to the PDF content in the query input field.
36
+ 3. **Submit**: Click the "Submit" button to process the file and get a response.
37
+ 4. **View Response**: The generated response will be displayed below the input fields.
38
+
39
+ ## Requirements
40
+
41
+ To run this app locally, ensure you have the following Python packages installed:
42
+
43
+ - `transformers`: For using pre-trained transformer models.
44
+ - `PyPDF2`: For extracting text from PDF files.
45
+ - `torch`: PyTorch library for running the model.
46
+ - `streamlit`: For the web app interface.
47
+
48
+ ## Installation
49
+
50
+ 1. Clone the repository:
51
+ ```bash
52
+ git clone https://github.com/mldatascientist23/Generative_AI_Projects.git
53
+ cd your-repository
54
+ ```
55
+
56
+ 2. Install the required packages:
57
+ ```bash
58
+ pip install transformers PyPDF2 torch streamlit
59
+ ```
60
+
61
+ 3. Run the Streamlit app:
62
+ ```bash
63
+ streamlit run app.py
64
+ ``