Spaces:
Sleeping
Sleeping
File size: 2,175 Bytes
69bf39e 5e9dd30 69bf39e 62e64fb 5e9dd30 62e64fb 5e9dd30 62e64fb 5e9dd30 62e64fb 5e9dd30 62e64fb 5e9dd30 62e64fb 5e9dd30 62e64fb 5e9dd30 62e64fb 5e9dd30 62e64fb d9e1771 62e64fb 5e9dd30 62e64fb 7bdff6e 62e64fb 7ff270d 62e64fb 6feb14e 62e64fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import streamlit as st
from PyPDF2 import PdfReader
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Initialize the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("himmeow/vi-gemma-2b-RAG")
model = AutoModelForCausalLM.from_pretrained(
"himmeow/vi-gemma-2b-RAG",
device_map="auto",
torch_dtype=torch.bfloat16
)
# Use GPU if available
if torch.cuda.is_available():
model.to("cuda")
# Streamlit app layout
st.set_page_config(page_title="π PDF Query App", page_icon=":book:", layout="wide")
st.title("π PDF Query App")
st.sidebar.title("Upload File and Query")
# Sidebar: File Upload
uploaded_file = st.sidebar.file_uploader("Upload your PDF file", type="pdf")
# Sidebar: Query Input
query = st.sidebar.text_input("Enter your query:")
# Handle file upload
if uploaded_file and query:
# Read the PDF file
pdf_text = ""
with open(uploaded_file, "rb") as file:
reader = PdfReader(file)
for page_num in range(len(reader.pages)):
page = reader.pages[page_num]
text = page.extract_text()
pdf_text += text + "\n"
# Define the prompt format for the model
prompt = """
### Instruction and Input:
Based on the following context/document:
{}
Please answer the question: {}
### Response:
{}
"""
# Format the input text
input_text = prompt.format(pdf_text, query, " ")
# Encode the input text into input ids
input_ids = tokenizer(input_text, return_tensors="pt")
# Use GPU for input ids if available
if torch.cuda.is_available():
input_ids = input_ids.to("cuda")
# Generate text using the model
outputs = model.generate(
**input_ids,
max_new_tokens=500, # Limit the number of tokens generated
no_repeat_ngram_size=5, # Prevent repetition of 5-gram phrases
)
# Decode and display the results
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
st.write(response)
# Footer with LinkedIn link
st.sidebar.write("---")
st.sidebar.write("Created by: [Engr. Hamesh Raj](https://www.linkedin.com/in/datascientisthameshraj/)") |