import gradio as gr import os import openai from newspaper import Article from newspaper import Config import json import re from transformers import GPT2Tokenizer import requests # define the text summarizer function def text_prompt(request, system_role, page_url, contraseña, temp): try: USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:78.0) Gecko/20100101 Firefox/78.0' config = Config() config.browser_user_agent = USER_AGENT config.request_timeout = 10 article = Article(page_url, config=config) article.download() article.parse() except Exception as e: return "", f"--- An error occurred while processing the URL: {e} ---", "" tokenizer = GPT2Tokenizer.from_pretrained("gpt2") #TODO: for chinese, separator is '。' sentences = article.text.split('.') tokens = [] page_text = "" for sentence in sentences: tokens.extend(tokenizer.tokenize(sentence)) # Trim text to a maximum of 3100 tokens if len(tokens) > 3100: break page_text += sentence + ". " # Delete the last space page_text = page_text.strip() num_tokens = len(tokens) if num_tokens > 10 and contraseña.startswith("sk-"): openai.api_key = contraseña # get the response from openai API try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": system_role}, {"role": "user", "content": request + "\n\n" + 'Text:\n\n"' + page_text + '\n"'} ], max_tokens=512, temperature=temp, top_p=1.0, ) # get the response text response_text = response['choices'][0]['message']['content'] total_tokens = response["usage"]["total_tokens"] # clean the response text response_text = re.sub(r'\s+', ' ', response_text) response_text = f"#### [{page.title}]({article_url})\n\n{response_text.strip()}" total_tokens_str = str(total_tokens) + " (${:.2f} USD)".format(total_tokens/1000*0.002) return article.text, response_text, total_tokens_str except Exception as e: return article.text, f"--- An error occurred while processing the request: {e} ---", num_tokens return article.text, "--- Check API-Key or Min number of tokens:", str(num_tokens) # define the gradio interface iface = gr.Interface( fn=text_prompt, inputs=[gr.Textbox(lines=1, placeholder="Enter your prompt here...", label="Prompt:", type="text"), gr.Textbox(lines=1, placeholder="Enter your gpt-role description here...", label="GPT Role:", type="text"), gr.Textbox(lines=1, placeholder="Enter the Article's URL here...", label="Article's URL to parse:", type="text"), gr.Textbox(lines=1, placeholder="Enter your API-key here...", label="API-Key:", type="password"), gr.Slider(0.0,1.0, value=0.7, label="Temperature:") ], outputs=[gr.Textbox(label="Input:"), gr.Markdown(label="Output:"), gr.Markdown(label="Total Tokens:")], examples=[["请用简体中文生成一段200字的摘要, 并提取5个关键词.", "Act as a News Editor", "https://openai.com/blog/planning-for-agi-and-beyond","",0.7], ["Generate a summary of the following text. Give me an overview of the main business impact from the text following this template:\n- Summary:\n- Business Impact:\n- Companies:", "Act as a Business Consultant", "https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html","",0.7], ["Generate the next insights based on the following text. Indicates N/A if the information is not available in the text.\n- Summary:\n- Acquisition Price:\n- Why is this important for the acquirer:\n- Business Line for the acquirer:\n- Tech Focus for the acquired (list):","Act as a Business Consultant", "https://techcrunch.com/2022/09/28/eqt-acquires-billtrust-a-company-automating-the-invoice-to-cash-process-for-1-7b/","",0.3] ], title="ChatGPT info extraction from URL", description="This tool allows querying the text retrieved from the URL with newspaper3k lib and using OpenAI's [gpt-3.5-turbo] engine.\nThe URL text can be referenced in the prompt as \"following text\".\nA GPT2 tokenizer is included to ensure that the 1.800 token limit for OpenAI queries is not exceeded. Provide a prompt with your request, the description for the system role, the url for text retrieval, your api-key and temperature to process the text." ) # error capturing in integration as a component error_message = "" try: iface.queue(concurrency_count=20) iface.launch() except Exception as e: error_message = "An error occurred: " + str(e) iface.outputs[1].value = error_message