from fastapi import FastAPI import uvicorn import faiss from sentence_transformers import SentenceTransformer model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') index = faiss.IndexFlatL2(model.get_sentence_embedding_dimension()) # build the index index.add(model.encode(['hello'])) app = FastAPI() @app.post('/tts') async def transcribe(text: str): embeddings = model.encode([text]) # store the text to a file return embeddings[0] if __name__ == '__main__': uvicorn.run('app:app', host='0.0.0.0', port=7860)